• Title/Summary/Keyword: ginkgolide B

Search Result 14, Processing Time 0.018 seconds

Inhibitory Effect of Ginkgolide B on Platelet Aggregation in a cAMP- and cGMP-dependent Manner by Activated MMP-9

  • Cho, Hyun-Jeong;Nam, Kyung-Soo
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.678-683
    • /
    • 2007
  • Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 ${\mu}g/ml$)-stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metallo-proteinase-9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular $Ca^{2+}$ mobilization, and thromboxane $A_2$ ($TXA_2$) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or $TXA_2$ synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular $Ca^{2+}$ mobilization and $TXA_2$ production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.

Phytochemical Analysis of Ginkgo biloba Yellow Leaves (노란은행잎의 성분분석)

  • Kang, Sam-Sik;Koh, Young-Min;Kim, Ju-Sun;Lee, Myung-Whan;Lee, Dong-Sun
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.1
    • /
    • pp.23-26
    • /
    • 1995
  • 6-Hydroxykynurenic acid and ginkgolide B together with flavonol glycosides and biflavonoids were isolated from the yellow leaves of Ginkgo biloba and identified by means of spectroscopic methods. The correctness of $H{\"{o}}lzl's$ ${13}^C-NMR$ assignments for 6-hydroxykynurenic acid was confirmed by HMQC and HMBC techniques. Based on our present findings, it may be considered that the yellow Ginkgo leaves may contribute to be a source of high medicinal values.

  • PDF

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

In Vitro Peroxynitrite Scavenging Activity of 6-Hydroxykynurenic Acid and Other Flavonoids from Gingko biloba Yellow Leaves

  • Hyun, Sook-Kyung;Jung, Hyun-Ah;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1074-1079
    • /
    • 2006
  • As part of our research on phytochemicals that exert protective effects against diseases related to reactive nitrogen species, we have evaluated the scavenging activity of the yellow leaves of Ginkgo biloba on $ONOO^{-}$. The methanol extract and ethyl acetate fraction obtained from yellow leaves of G. biloba evidenced a marked scavenging activity on authentic $ONOO^{-}$. Repeated column chromatography of the active ethyl acetate soluble fraction on silica gel, Sephadex LH-20, and RP-18, resulted in the purification of 15 known compounds, including sciadopitysin (1), ginkgolide B (2), bilobalide (3), isoginkgetin (4), kaempferol (5), luteolin (6), protocatechuic acid (7), bilobetin (8), amentoflavone (9), ${\beta}-sitosterol$ glucopyranoside (10), kaempferol 3-O-rhamnopyranoside (11), kaempferol 3-O-glucopyranoside (12), kaempferol $3-O-[{6^{'}-O-p-coumaroyl-{\beta}-D-glucopyranosyl(1{\rightarrow}2)-{\alpha}-L-rhamnopyranoside]$ (13), kaempferol 3-O-rutinoside (14), and 6-hydroxykynurenic acid (15). Among the compounds isolated, flavonoids (5, 6 and 11-14), protocatechuic acid (7), and 6-hydroxykynurenic acid (15) all exhibited marked scavenging activities on authentic $ONOO^{-}$. The $IC_{50}$ values of 5-7, 11-14 and 15 were as follows: $2.86{\pm}0.70,\;2.30{\pm}0.04,\;2.85{\pm}0.10,\;5.60{\pm}0.47,\;4.16{\pm}1.65,\;2.47{\pm}0.15,\;3.02{\pm}0.48,\;and\;6.24{\pm}0.27\;{\mu}M$, respectively. DL-Penicillamine ($IC_{50}=4.98{\pm}0.27\;{\mu}M$) was utilized as a positive control. However, the other compounds (1-4, 8-10) exerted no effects against $ONOO^{-}$.