• Title/Summary/Keyword: gimbal

Search Result 208, Processing Time 0.022 seconds

The simulation of INS error due to gimbal servo dynamics (김블 서어보 다이나믹스에 의한 INS 오차 시뮬레이션)

  • 김현백;정태호;오문수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.281-285
    • /
    • 1986
  • In this paper, the characteristics of disturbance torque of gimbal servo dynamics are studied, and the simulation methods of gimbal servo dynamics and INS error due to angular rate and linear acceleration of vehicle are proposed. In results of the simulation for a specific INS, it is estimated that INS velocity error due to gimbal servo dynamics is nearly proportional to square of vehicle acceleration.

  • PDF

The Design of a Direct Driving Gimbal System Using the DSP(TMS320F240) Controller and the Gyroscope (DSP제어기, 자이로센서를 이용한 GIMBAL시스템 설계)

  • 류정오;최중경;최승진;안기호;박성수
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.139-142
    • /
    • 2001
  • This paper presents a design of two gimbal system. One is two axes stabilized platform that is targeted to preserve direction while vehicle that is adhered antiaircraft fire, radar or EOTS is moving. The system maintains stabilization by recovering error using the rate gyro. The other is three axes gimbal system that is intended to simulate various angle movement in space and to test three axes gyroscope. This system determines gyro condition comparing gyro output value with converted motor encoder value.

  • PDF

Design and Development of Shaker for Acceleration test of Gimbal (김발의 가속도 시험용 Shaker의 설계 및 개발)

  • Yoon, Jae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.147-153
    • /
    • 2001
  • This paper proposes a shaker system design for acceleration test of gimbal. Main reason of shaker system design is to give acceleration to the gimbal, which is moving and tracking the target on the tracking test equipment. The shaker system is mounted on the tracking test equipment. It uses the scotch yoke mechanism to have the constant movement in return. The Scotch yoke mechanism changes the rotational movement of constant velocity to simple harmonic motion.

  • PDF

Vibration Characteristic Analysis of Gimbal Structure System with Observation Reconnaissance Camera Module (감시 정찰 카메라부를 포함한 짐발 구조 시스템의 진동 특성 해석)

  • Lee, Sang-Eun;Lee, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • A gimbal system in observation reconnaissance aircraft was fabricated by assembling many parts and bearings. This system consists of a camera module and a stabilization gimbal that supports the camera module. During the flight for recording images, the gimbal system experiences various accelerations with wide frequencies. Although base excitation of stabilization gimbal results in vibration of the camera module, the camera module must be able to capture the correct and clear image even while vibrating. Hence, it is important to know the natural frequencies and vibration modes of the gimbal system with the camera module. Considering bearings as spring elements, the vibration characteristic of the gimbal system was analyzed by finite element method. In addition, harmonic response analysis was performed to determine the correct transmissibility of acceleration for the camera module in the frequency range of 0-500 Hz.

Micro-vibration Test on a Two-axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Yong, Ki-Lyuk;Choi, Hong-Taek;Park, Gee-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1042-1048
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting image jitter response of a satellite. The gimbal system comprises azimuth stage and elevation stage, and these pointing mechanism can be rotated by stepping motors about its azimuth and elevation axes simultaneously. Because of the complex and coupled dynamic motion of the gimbal system, its moment of inertia and structural modes can be changed according to the system configuration, and thus the gimbal system generates complicated and non-linear disturbance characteristics. In order to improve the jitter response of a spacecraft, it is an indispensable process to reduce the micro-vibration disturbance level of the antenna system. In the present research, a 2-axis gimbal system was manufactured and then its micro-vibration test was performed in terms of two types of stepping motors(2-phase and 5-phase). The test results show that the disturbance level of the gimbal system can be reduced by replacing the 2-phase stepping motor with the 5-phase one, and the average disturbance attenuation ratio is 56 % in peak level and 48 % in standard deviation level. The experimental results confirm that it is an efficient jitter reduction method to adopt a high-phase stepping motor.

Control System Design for a UAV-Mounted Camera Gimbal Subject to Coulomb Friction (쿨롱마찰을 고려한 무인항공기용 영상 김발의 제어시스템 설계)

  • Hwang, Sung-Pil;Park, Jea-Ho;Hong, Sung-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.680-687
    • /
    • 2012
  • One of the frequent problems in the stabilized gimbal system is the rejection of disturbances associated with moving components. Very often such disturbances have non-linear characteristics. In a typical gimbal system, each gimbal and platform are connected by a mutual bearing which induces inevitable friction. Particularly, the non-linear Coulomb friction causes position errors as well as slow responses that lead to unfavorable performance. In this paper, a modified PID controller that is augmented by Coulomb friction estimator is presented. Through constantly estimating the Coulomb friction torque, it is applied to the output of the existing PID controller. The effectiveness of the proposed controller is evaluated through a series of experiments.

A Study of Motion for Four-Axis Stabilized Platform Including Effects of Gimbal Bearing Friction (김벌 베어링 마찰의 영향을 고려한 4축 안정화 플랫폼의 운동에 관한 연구)

  • Shin, Y.J.;Cho, K.R.;Lee, J.K.;Cho, S.;Choi, S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.52-63
    • /
    • 1995
  • This paper presents a detailed derivation of the equations of motion for the stable member of a four-axis platform. Gimbal bearing friction is considered for motion analysis. First, dynamic characteristics of platform, gimbal and gyro with Coulomb friction are studied due to vehicle's angular motion. Second, Vehicle's motion is assumed the sinusoidal function and dynamic characteristics of platform, gimbal and gyro are studied. Conclusively, considering effects of Coulomb friction, they could not follow the vehicle's angular motion and have constant errors. In case of sinusoidal motion, relative angles for each gimbal are amplified, but they are sinusoidal function with almost the same phases.

  • PDF

Shock Analysis of Gimbal Structure System Including Rubber Vibration Isolator in a Observation Reconnaissance Aircraft (방진 고무를 포함한 항공 감시 정찰용 짐발 구조 시스템의 충격 해석)

  • Lee, Sang Eun;Lee, Tae Won;Kang, Yong Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.73-80
    • /
    • 2014
  • A camera module that gathers visual information via aerial observation reconnaissance is equipped inside a gimbal structure. This gimbal structure system must reduce dynamic responses in order to obtain clear images under all circumstances. Among many design specifications for this system, there is MIL-STD-810G as a shock standard. This specification indicates a limitation of the acceleration of the camera module under a base shock excitation on the gimbal structure. The satisfaction of this condition can usually be proved by experiment, because it includes bearings and dynamic isolators made of rubber. Numerical analysis must be proposed for design improvement of the gimbal structure. To achieve this goal, transient response analysis for the base shock excitation was performed using the finite element method. Experimental results were compared with numerical solutions and it is shown that the present method is useful.

An Attitude Control and Stabilization of an Unstructured Object using CMG Subsystem (자이로 구동장치를 이용한 공중물체의 자세제어 및 안정화)

  • Lee, Geon-Yeong;Gwon, Man-O
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.459-466
    • /
    • 2000
  • In this paper, we propose an attitude controller for an unstructured object using CMG(Control Moment of Gyro) subsystem, which has a stabilizer function. The CMG subsystem consists of one motor for spinning the wheel and the other motor for turning the outer gimbal. While the wheel of CMG subsystem is spinning at high speed, applying force to the spin axis of the wheel leads the torque about the vertical axis. We utilize the torque to control the attitude of object in this study. For the stabilizer function, in additiion, holding the load at the current position, the power applied to the gimbal motor of CMG will be cut, which result in the braking force to stop the load by gyro effect. However, due to the gear reduction connected to outer gimbal, slow load motion cannot generate the braking force. Thus, in this study, we are willing to make a holding force by applying control power to the gimbal motor from the signal of piezoelectric gyroscopic sensor that detected the angular velocity of the load. These two features are demonstrated in experiment, carrying a beam with crane. As a result, load was started to rotate by controlling gimbal positiion and was stopped by turning off the gimbal power. Moreover, slow movement of the load was also rejected by additional control with gyroscopic sensor.

  • PDF

Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control (제어모멘트자이로 김블의 토크 외란 모델링 검증 및 피드포워드 제어를 이용한 토크 리플 저감)

  • Lee, Junyong;Oh, Hwasuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • In this study, the generating of torque regarding the Control Moment Gyro (CMG) is proportional to the angular velocity of gimbal. This is the case because gimbal affects the attitude control of the satellite directly, and it is necessary to reduce the incidence of torque ripple of gimbal. In this paper, the cause of the torque ripple of gimbal is reviewed and mathematically modeled by assuming the friction imbalance of bearing, the magnetic field and the phase current imbalance of the motor. We are able to confidently estimate the modeling parameters of gimbal disturbance using a constant speed test, and then analyze the influence of applying feedforward control to our modeling. Additionally, the simulation results show that the torque ripple and angular velocity fluctuations are reduced when apply this modeling to the identified study parameters. Finally, we present the disturbance reduction technique using our disturbance modeling.