• Title/Summary/Keyword: gesture spotting

Search Result 10, Processing Time 0.022 seconds

Recognition-Based Gesture Spotting for Video Game Interface (비디오 게임 인터페이스를 위한 인식 기반 제스처 분할)

  • Han, Eun-Jung;Kang, Hyun;Jung, Kee-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1177-1186
    • /
    • 2005
  • In vision-based interfaces for video games, gestures are used as commands of the games instead of pressing down a keyboard or a mouse. In these Interfaces, unintentional movements and continuous gestures have to be permitted to give a user more natural interface. For this problem, this paper proposes a novel gesture spotting method that combines spotting with recognition. It recognizes the meaningful movements concurrently while separating unintentional movements from a given image sequence. We applied our method to the recognition of the upper-body gestures for interfacing between a video game (Quake II) and its user. Experimental results show that the proposed method is on average $93.36\%$ in spotting gestures from continuous gestures, confirming its potential for a gesture-based interface for computer games.

  • PDF

Recognizing Hand Digit Gestures Using Stochastic Models

  • Sin, Bong-Kee
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.6
    • /
    • pp.807-815
    • /
    • 2008
  • A simple efficient method of spotting and recognizing hand gestures in video is presented using a network of hidden Markov models and dynamic programming search algorithm. The description starts from designing a set of isolated trajectory models which are stochastic and robust enough to characterize highly variable patterns like human motion, handwriting, and speech. Those models are interconnected to form a single big network termed a spotting network or a spotter that models a continuous stream of gestures and non-gestures as well. The inference over the model is based on dynamic programming. The proposed model is highly efficient and can readily be extended to a variety of recurrent pattern recognition tasks. The test result without any engineering has shown the potential for practical application. At the end of the paper we add some related experimental result that has been obtained using a different model - dynamic Bayesian network - which is also a type of stochastic model.

  • PDF

Alphabetical Gesture Recognition using HMM (HMM을 이용한 알파벳 제스처 인식)

  • Yoon, Ho-Sub;Soh, Jung;Min, Byung-Woo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.384-386
    • /
    • 1998
  • The use of hand gesture provides an attractive alternative to cumbersome interface devices for human-computer interaction(HCI). Many methods hand gesture recognition using visual analysis have been proposed such as syntactical analysis, neural network(NN), Hidden Markov Model(HMM) and so on. In our research, a HMMs is proposed for alphabetical hand gesture recognition. In the preprocessing stage, the proposed approach consists of three different procedures for hand localization, hand tracking and gesture spotting. The hand location procedure detects the candidated regions on the basis of skin-color and motion in an image by using a color histogram matching and time-varying edge difference techniques. The hand tracking algorithm finds the centroid of a moving hand region, connect those centroids, and thus, produces a trajectory. The spotting a feature database, the proposed approach use the mesh feature code for codebook of HMM. In our experiments, 1300 alphabetical and 1300 untrained gestures are used for training and testing, respectively. Those experimental results demonstrate that the proposed approach yields a higher and satisfying recognition rate for the images with different sizes, shapes and skew angles.

  • PDF

Dynamic Gesture Recognition using SVM and its Application to an Interactive Storybook (SVM을 이용한 동적 동작인식: 체감형 동화에 적용)

  • Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.64-72
    • /
    • 2013
  • This paper proposes a dynamic gesture recognition algorithm using SVM(Support Vector Machine) which is suitable for multi-dimension classification. First of all, the proposed algorithm locates the beginning and end of the gestures on the video frames at the Kinect camera, spots meaningful gesture frames, and normalizes the number of frames. Then, for gesture recognition, the algorithm extracts gesture features using body parts' positions and relations among the parts based on the human model from the normalized frames. C-SVM for each dynamic gesture is trained using training data which consists of positive data and negative data. The final gesture is chosen with the largest value of C-SVM values. The proposed gesture recognition algorithm can be applied to the interactive storybook as gesture interface.

Gesture Spotting by Web-Camera in Arbitrary Two Positions and Fuzzy Garbage Model (임의 두 지점의 웹 카메라와 퍼지 가비지 모델을 이용한 사용자의 의미 있는 동작 검출)

  • Yang, Seung-Eun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.2
    • /
    • pp.127-136
    • /
    • 2012
  • Many research of hand gesture recognition based on vision system have been conducted which enable user operate various electronic devices more easily. 3D position calculation and meaningful gesture classification from similar gestures should be executed to recognize hand gesture accurately. A simple and cost effective method of 3D position calculation and gesture spotting (a task to recognize meaningful gesture from other similar meaningless gestures) is described in this paper. 3D position is achieved by calculation of two cameras relative position through pan/tilt module and a marker regardless with the placed position. Fuzzy garbage model is proposed to provide a variable reference value to decide whether the user gesture is the command gesture or not. The reference is achieved from fuzzy command gesture model and fuzzy garbage model which returns the score that shows the degree of belonging to command gesture and garbage gesture respectively. Two-stage user adaptation is proposed that off-line (batch) adaptation for inter-personal difference and on-line (incremental) adaptation for intra-difference to enhance the performance. Experiment is conducted for 5 different users. The recognition rate of command (discriminate command gesture) is more than 95% when only one command like meaningless gesture exists and more than 85% when the command is mixed with many other similar gestures.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Automatic Coarticulation Detection for Continuous Sign Language Recognition (연속된 수화 인식을 위한 자동화된 Coarticulation 검출)

  • Yang, Hee-Deok;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Sign language spotting is the task of detecting and recognizing the signs in a signed utterance. The difficulty of sign language spotting is that the occurrences of signs vary in both motion and shape. Moreover, the signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and non-sign patterns(which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing a threshold model in a conditional random field(CRF) model is proposed. The proposed model performs an adaptive threshold for distinguishing between signs in the vocabulary and non-sign patterns. A hand appearance-based sign verification method, a short-sign detector, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experimental results show that the proposed method can detect signs from continuous data with an 88% spotting rate and can recognize signs from isolated data with a 94% recognition rate, versus 74% and 90% respectively for CRFs without a threshold model, short-sign detector, subsign reasoning, and hand appearance-based sign verification.

A hand gesture recognition method for an intelligent smart home TV remote control system (스마트 홈에서의 TV 제어 시스템을 위한 손 제스처 인식 방법)

  • Kim, Dae-Hwan;Cho, Sang-Ho;Cheon, Young-Jae;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.516-520
    • /
    • 2007
  • This paper presents a intuitive, simple and easy smart home TV remote control system using the hand gesture recognition. Hand candidate regions are detected by cascading policy of the part of human anatomy on the disparity map image, Exact hand region is extracted by the graph-cuts algorithm using the skin color information. Hand postures are represented by shape features which are extracted by a simple shape extraction method. We use the forward spotting accumulative HMMs for a smart home TV remote control system. Experimental results show that the proposed system has a good recognition rate of 97.33 % for TV remote control in real-time.

  • PDF

Robust Gesture Spotting and Recognition in Continuous Full Body Gesture (연속적인 전신 제스처에서 강인한 행동 적출 및 인식)

  • Park A.-V.;Shin H.-K.;Lee S.-W
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.898-900
    • /
    • 2005
  • 강인한 행동 인식을 하기 위해서는 연속적인 전신 제스처 입력에서부터 의미 있는 부분만을 분할하는 기술이 필요하다. 하지만 의미 없는 행동을 정의하고, 모델링 하기 어렵기 때문에, 연속적인 행동에서 중요한 행동만을 분할한다는 것은 어려운 문제이다. 본 논문에서는 연속적인 전신 행동의 입력으로부터 의미있는 부분을 분할하고, 동시에 인식하는 방법을 제안한다. 의미 없는 행동을 제거하고, 의미 있는 행동만을 적출하기 위해 garbage 모델을 제안한다. 이 garbage 모델에 의해 의미 있는 부분만 HMM의 입력으로 사용되어지며, 학습되어진 HMM 중에서 가장 높은 확률 값을 가지는 모델을 선택하여. 행동으로 인식한다. 제안된 방법은 20명의 3D motion capture data와 Principal Component Analysis를 이용하여 생성된 80개의 행동 데이터를 이용하여 평가하였으며, 의미 있는 행동과, 의미 없는 행동을 포함하는 연속적인 제스처 입력열에 대해 $98.3\%$의 인식률과 $94.8\%$의 적출률을 얻었다.

  • PDF

Gesture Spotting using Fuzzy Garbage Model and User Adaptation (퍼지 가비지 모델과 사용자 적응을 이용한 의미 있는 동작 검출)

  • Yang, Seung-Eun;Park, Kwang-Hyun;Jang, Hyo-Young;Do, Jun-Hyeong;Huh, Sung-Hoi;Bien, Zeung-Nam
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.681-687
    • /
    • 2007
  • 첨단 기술의 발전과 함께 장애인 및 노약자의 삶의 질에 대한 관심이 증가함에 따라 사용자가 각종 시스템들을 보다 쉽게 제어할 수 있는 방법들이 많이 연구되고 있다. 그 중 하나로 정의된 손 움직임 동작을 인식하여 가전기기 혹은 환경 제어 시스템, 홈 로봇 등에 명령을 내리는 기술을 예로 들 수 있다. 하지만, 정의된 손 움직임이 일상생활에서 발생하는 동작과 비슷한 경우 오작동을 일으킬 가능성이 있으며, 이를 차단하기 위해 복잡한 동작을 명령어로 사용할 경우 사용자의 편의성을 떨어뜨린다. 본 논문에서는 이러한 문제를 해결하기 위해 비슷한 동작 중에서 특정 동작을 검출할 수 있는 퍼지 가비지 모델을 제안한다. 퍼지 가비지 모델이란 인식하고자 하는 특정 동작을 제외한 다른 유사 동작의 특성을 반영하여 구현한 퍼지 모델을 말한다. 따라서 사용자의 동작으로부터 특징 값을 구한 후 이를 특정 동작에 대한 퍼지 모델과 퍼지 가비지 모델에 각각 대입하여 얻은 결과를 비교해서 어떤 동작이 발생하였는지 결정한다. 또한 사용자의 행동 특성은 개인마다 다르게 나타나고 동일 사용자라 하더라도 경우에 따라 동작에 편차가 나타날 수 있기 때문에 특정 사용자에 대한 시스템의 적응이 필요하다. 이를 위해 다양한 경우를 고려하여 최적화된 값을 찾을 수 있는 진화 알고리즘을 이용하여 퍼지 모델 파라미터를 갱신하는 방법을 제안한다. 제안한 방법의 타당성을 검증하기 위해 5명의 사용자로부터 명령 동작과 의미 없는 유사 동작의 데이터를 획득하여 실험 결과를 보인다.

  • PDF