• Title/Summary/Keyword: geothermal water

Search Result 338, Processing Time 0.025 seconds

Installation and Monitoring of Bankfiltration (including alluvial and riverbed deposits) Source Heat Pump Cooling System (강변여과수(충적층 및 하상)를 이용한 냉방시스템 설치 및 모니터링)

  • Jung, Woo-Sung;Hwang, Ki-Sup;Ahn, Young-Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.5-8
    • /
    • 2006
  • The Alternative energy has lately attracted considerable attention due to the high oil price and environment problem. In this study, pilot test facility for using the geothermal energy source from riverbank filtration was constructed and monitoring devices are installed to estimate the efficiency of this system. Initial installation cost can be saved efficiently by connect ing a heat pump system into the exist ing pumping well in Changwon riverbank filtration site. One set of monitoring results during summer was presented and analyzed.

  • PDF

Review of small hydropower system

  • Jantasuto, Orawan
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • Renewable energy resources play an important part in the world's future. Renewable energy sources have the following components: biomass, geothermal, solar thermal, directs solar, wind, tidal and hydropower. Hydropower is still the most efficient way to generate electricity worldwide. Hydropower projects can contribute as a cheap energy source, as well to encourage the development of small industries across a wide range of new technology; furthermore hydropower systems use the energy in flowing and falling water to produce electricity or mechanical energy. Hydropower systems are classified as large, medium, small, mini and micro according to their installed power generation capacity, as do the following components: water turbines, control mechanisms and electrical transmissions. In this article a review of small hydropower systems has been done on the principles surrounding the fundamentals of hydraulic engineering, the fundamentals of hydrology, identification of sites and economic analysis.

Investigation of the Geoelectrical Response at the Hydrocarbon-impacted Zone (유류 오염대의 전기적 물성 특성 연구)

  • Kim, Chang-Ryol;Ko, Kyung-Seok;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.225-230
    • /
    • 2007
  • A physical model experiment with GPR and 3-D resisitivity survey were conducted to investigate the geoelectrical response of hydrocarbon-impacted zone, so called smeared zone, on the geophysical data. The results from the experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water saturated system (${\varepsilon}_r$ = 21) due to less attenuation of the electromagnetic energy through the medium, compared to when the medium was saturated with only water (${\varepsilon}_r$ = 21). 3-D resistivity data obtained from the former gas station site demonstrate that the highly contaminated zones could be imaged with low resistivities attributed to the biodegradation of petroleum hydrocarbons at the aged, hydrocarbon-impacted sites. The study results also show that the geophysical methods, as a non-invasive sounding technique, can be a very useful tool for mapping hydrocarbon-contaminated zones.

  • PDF

Suggestion of Allocation Methodology of Environmental Pollution Cost on Multi - Product (복합생산품에 대한 환경오염비용 배분 방법론)

  • Kim, Deok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.311-318
    • /
    • 2009
  • In previous study, a new allocation methodology of common cost on multi-product have been suggested. The aim of this study is to suggest the methodology that allocates an environment pollution cost including carbon emission cost to each cost of multi-product. For this study, a supposed multi-energy system composed of twenty kinds of systems was made. The multi-energy system produces eighteen kinds of outputs that are electricity, steam, hot water, chilled water, ice, warm air, and cooling air from seven kinds of energy source that are LNG, coil, geothermal energy, sun heat, hydrogen, bio-mass, and waste. The new methodology was applied to the multi-energy system in order to allocate the environment pollution cost to each production cost, and twenty seven equations were induced. From this result, it is concluded that this methodology can estimate each unit cost and allocate each cost flow in any product of any energy system.

Analysis of Surface Temperature Change and Heat Dissipation Performance of Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 도로 포장체의 표면 온도 변화와 방열 성능 분석)

  • Byonghu Sohn;Muhammad Usman;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.2
    • /
    • pp.8-19
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have well studied and documented by many researchers. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their heating and cooling performance. The aim of this study is to investigate the thermal performance of the HHP, such as heat dissipation performance in winter season while focusing on the surface temperature of the concrete and asphalt pavement. For preliminary study a small-scale experimental system was designed and installed to evaluate the heat transfer characteristics of the HHP in the test field. The system consists of concrete and asphalt slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In two slabs, circulating water piping was embedded at a depth of 0.12 m at intervals of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. The results indicated that concrete's heating performance is better than that of asphalt, showing higher surface temperatures for the whole experiment cases. However, the surface temperature of both concrete and asphalt pavement slabs remained above 0℃ for all experimental conditions. The heat dissipation performance of concrete and asphalt pavements was analyzed, and the heat dissipation of concrete pavement was greater than that of asphalt. In addition, the higher the set temperature of the circulating water, the higher the heat dissipation. On the other hand, the concrete pavement clearly showed a decrease in heat dissipation as the circulating water set temperature decreased, but the decrease was relatively small for the asphalt pavement. Based on this experiment, it is considered that a circulating water temperature of 20℃ or less is sufficient to prevent road ice. However, this needs to be verified by further experiments or computational fluid dynamic (CFD) analysis.

Greenhouse Heating Technology Development by using Riverbank Filtration Water (강변여과수를 이용한 온실난방기술 개발)

  • Moon, Jong-Pil;Lee, Sung-Hyoun;Kwon, Jin-Kyung;Kang, Youn-Ku;Ryou, Young-Sun;Lee, Su-Jang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.145-152
    • /
    • 2011
  • In order to heat greenhouse nearby river channel, riverbank filtration water source heat pump was developed for getting plenty of heat flux from geothermal energy. Recharging well, thermal storage tank with separating insulation plate and filtering tank for eliminating iron, manganese were mainly developed for making the coefficient of performance (COP) of heat pump higher. Heating system using riverbank filtration water source heat pump was installed at a paprika greenhouse in the Jinju region where a single fold of vinyl cover and 2 layers of horizontal thermal curtain were installed as a part of temperature keeping and heat insulation with a greenhouse area of 3,185 $m^2$. 320,000 kcal/h was supplied for performing a site application tests. A greenhouse heating test was performed from Feb. 1, 2011 to Apr. 30, 2011. As the result of that, COPh of the heat pump was measured in the range of 4.0~4.5, while COPS of the system was represented as 2.9~3.3. COP measured of the heat pump was very good and well responded to indoor heating temperature of the environment control system of a greenhouse.

A Study of Bubble Pump that is applied Solar Heating Water System (태양열 온수 시스템에 적용한 기포펌프의 동작특성에 관한 연구)

  • Park, G.T.;Song, L.;Shim, K.J.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • Regarding the need of energy in advance and the depletion of fossil fuel energy, all researches around the world now are trying to extract energy from many alternative sources especially the renewable one. Solar, ocean tidal, wind and geothermal energy are renewable energy fields which many researches are focused on. This paper explains about effort to replace electric pump used in solar water heating system by bubble pump. The utilization of bubble pump in this system is very efficient since it needs heat energy for its operation that can be obtained easily. In addition, it can also simplify the construction of the system. Bubble pump also functions as a controller to circulate water inside the system. Before the installation of bubble pump, the special quality and performance of bubble pump should be analyzed. The result got from the analysis could show the fluctuation of water flow rate occurred because it sensitively reacts to the heat quantity. Here the heat quantity is taken from the solar that, as we know, is not stable in a whole day. Problems often occurred are the flow rate in this system is very low moreover it could be stop if the pressure exceeds the limit.

  • PDF

Marine Controlled-source Electromagnetic Surveys for Hydrocarbon Exploration (탄화수소 탐지를 위한 해양 인공송신원 전자탐사)

  • Kim, Hee-Joon;Han, Nu-Ree;Choi, Ji-Hyang;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.163-170
    • /
    • 2006
  • The shortage of proven hydrocarbon reserves has resulted in exploration progressing from the offshore into progressively deeper water of the continental shelf. Despite the success of seismic acquisition at ever greater depths, there are marine geological terrenes in which the interpretation of seismic data is difficult, such regions dominated by scattering or high reflectivity that is characteristic of carbonate reefs, volcanic cover and submarine permafrost. A marine controlled-source electromagnetic (CSEM) method has recently been applied to the oil and gas exploration thanks to its high-resistivity characteristics of the hydrocarbon. In particular, this method produces better results in terms of sensitivity under the deep water environment rather than the shallow water. Only in the last five years has the relevance of CSEM been recognized by oil companies who now use it to help them make exploration drilling decisions. Initial results are most promising and several contractors now offer magnetotelluric and CSEM services.

Evaluation of Surface Temperature Variation and Heat Exchange Rate of Concrete Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 콘크리트 도로 포장체의 표면 온도 변화와 방열량 평가)

  • Byonghu Sohn;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have been well established and documented to provide road safety in winter season over the past two decades. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their performance. The aim of this study is to investigate the thermal performance of the concrete HHP systems, including surface temperature variations of experimental pavements in winter season. For preliminary study a small-scale experimental system was installed to evaluate the heat transfer characteristics of the concrete HHP in the test field. The system consists of 3 concrete slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In these slabs, circulating water piping was embedded with different pipe depths of 0.08 m (Case A), 0.12 m (Case B), and 0.20 m (Case C) and same horizontal space of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. Overall, the surface temperature of the concrete HHPs remained above 3℃ in all experimental conditions applied in this study. The results of the surface temperature measurement with respect to the pipe depth showed that Case B was the highest among the three cases. However, the closer the circulating water pipe was to the pavement surface, the greater the heat exchange rate. This results is considered that the heat is continuously accumulated inside the pavements and then the temperature inside the pavements increases, while the amount of heat dissipation decreases as the temperature difference between the inlet and outlet of circulating water decreases. In this preliminary test the applicability of the concrete HHP on road deicing was confirmed. Finally, the results can be used as a basis for studying the effects of various variables on road pavements through numerical analysis and for conducting large-scale empirical experiments.

A Study on Entering Water Temperature in Vertical Closed Ground Loop System Considering the Economical Feasibility in Load of the Office Building (사무시설에 수직형 지열원 냉 난방시스템의 경제성을 고려한 인입온도(EWT)에 관한 연구)

  • Lee, Byung-Doo;Lee, Dae-Woo;Lee, Se-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.579-585
    • /
    • 2009
  • Recently, Vertical-Closed Loop system using geothermal which is the most efficient among the building cooling and heating systems is coming into wide spread due to assistance of domestic policies. However, there is a limitation that a design of ground heat exchanger taking 60% of construction cost is done by GLD and GLHEPRO programs without specific guidelines and consideration on Entering Water Temperature(EWT). For getting an optimal EWT, we analyzed the costs for construction of ground heat exchanger and cooling and heating for 15 years. In the results, reduction of construction costs as the length of ground heat exchanger shortens was much greater than increase of the electrical power consumption as COP gets low. EWT that COP of heat pump can be 3.76 or above was below $31^{\circ}C$ in cooling and was over $5^{\circ}C$ in heating.

  • PDF