• Title/Summary/Keyword: geothermal resources

Search Result 216, Processing Time 0.026 seconds

Geochemistry of the Heunghae, Pohang Geothermal Fields, Korea (포항 흥해지역 지열대의 지화학)

  • Yun Uk;Cho Byong-Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.45-55
    • /
    • 2005
  • The geothermal research has been carried out on the Heunghae, Pohang geothermal area know as having geo-heat-flow area in the Korean peninsula. This study results so far indicate that geothermal water in the area is in peripheral waters of hydrothermal area and is not in equilibrium with the reservoir rock. The average oxygen and hydrogen stable isotope values are as follows: deep groundwater $(average:\;{\delta}^{18}O=-10.1\%_{\circ},\;{\delta}D=-65.8\%_{\circ})$, intermediate groundwater (average: $(average:\;{\delta}^{18}O=-8.9\%_{\circ},\;{\delta}D=-59.6\%_{\circ})$, shallow groundwater $(average:\;{\delta}^{18}O=-8.0\%_{\circ},\;{\delta}D=-53.6\%_{\circ})$, surface water $(average:\;{\delta}^{18}O=-7.9\%_{\circ},\;{\delta}D=-53.3\%_{\circ})$ respectively. Deep groundwaters was originated from a local meteoric water recharged from distant, topographically high mountain region and not affected by the sea water. High temperature zone inferred from water geothermometers is around D-1, D-5, D-6, 1-04 well zones. The estimated enthalpy from Silica-enthalpy mixing model is near 410 kJ/kg, which corresponds to the temperature of $98^{\circ}C$, and in consistent with the result of Na-K and K-Mg geothermometer.

Thermal Response Test (TRT) interpretation and the status in Korea (열응답 실험 해석 및 국내 현황)

  • Shim, Byoung Ohan;Choi, Choonghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.168.2-168.2
    • /
    • 2010
  • The growing market for geothermal heat pump system requires great consideration of quality control and assurance in design and construction. The borehole heat exchanger of GHP system should be sustainable, economical and ecological. Thermal Response Test (TRT) is a useful method for site investigation to obtain reliable data for a optimal system design from the technical and economical aspect. Intensive researches combined with exchange of experiences on an international level within the IEA ECES Annex 21 improved the technology. Major subjects on the interpretation of TRT are development of improved evaluation models, evaluation of the TRT with respect to geological layers and investigation of the influence of ground water. Current status of TRT in South Korea, as well as a new version of the Korean TRT standard test procedure was presented. TRT is mostly used for governmental supported projects with corresponds to more than 100 GCHP systems per year. More than 200 tests are applied, mostly on single U-tube heat exchangers (about 95%). Bentonite is the most common grouting to be used. KIGAM (Korea Institute of Geoscience & Mineral Resources) is also keeping a GIS geological and geothermal database. In the institute also laboratory measurements of rock properties are carried out. About 90% of the laboratory measurements of the rock heat conductivity shows higher values than the in-situ TRT.

  • PDF

Hydrologic Characterization through Ground Water Monitoring in a Coastal Aquifer (해안 대수층에서 지하수 장기 모니터링을 통한 수리 특성 조사)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Groundwater in small islands is used as main water resource but the overuse of groundwater may cause seawater intrusion and temperature decrease in geothermal wells. This study aimed to characterize the hydrogeology of Maeum-ri area in Seokmo Island of Ganghwagun using long-term monitoring at groundwater wells and geothermal wells. In the monitoring period seasonal water level change, consistent drop or increase of water levels are not detected. The groundwater temperature about 10m below ground surface shows year cycle variation having two to five months difference with ambient temperature cycle. The storativity was calculated by tidal method. The storativity estimated by adapting tidal efficiency factor showed some larger values than that by using tidal time lag. The result suggested that the tidal method assuming several assumptions on aquifer condition may produce broad ranges but the calculated ranges at this application are reasonable. The similar shape of groundwater level change and tidal effects was observed at several wells clustered east-south-east direction which may implicate the distribution of vertical fracture system strongly related with groundwater flow channels. The applied methodology and study results will bc valuable to evaluate optimal pumping rate for the preservation of groundwater resources, and to manage geothermal development.

Variation of Rare Earth Element Patterns during Rock Weathering and Ceramic Processes: A Preliminary Study for Application in Soil Chemistry and Archaeology (암석의 풍화과정 및 도자기 제조과정에 따른 희토류원소 분포도의 변화: 토양화학 및 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Kim, Kun-Han;Kim, Jin-Kwan
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.133-143
    • /
    • 2008
  • On the basis of chemical composition of granite, gneiss and their weathering products, in this paper, rare earth elements (REEs) was estimated as tracer for clarifying a geochemical variance of earth surface material during weathering process. The chemical composition of clay, clay ware and pottery also were measured for testifying usefulness of REE geochemistry in clarifying the source material of pottery. It was observed that there was no systematic variation of chemical composition among source rock, weathered rock and soil during weathering process. The chemical composition of clay, clay ware and pottery also did not show systematic variation by baking pottery. However, PAAS (Post Archean Australian Shale)-normalized REE patterns of rock-weathered rock-soil and clay-clay ware-pottery are similar regardless of weathering process or ceramic art. Our results confirm that REE geochemistry is powerful tool for clarifying the source materials of surface sediment or archaeological ceramic products.

Technical Trends of Domestic and Overseas on Electro-physical Properties Measurement (전기물성 측정의 국내외 기술 동향)

  • Park, Sam-Gyu;Cho, Seong-Jun;Lee, Tae-Jong;Lee, Seong-Kon;Lee, Sang-Kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.285-290
    • /
    • 2007
  • Electrical and electromagnetic methods were widely applied to survey of civil engineering, environment site assessments and maintenance of underground structures in Korea. Electro-physical properties measurements of soil and rock are necessary in order to quantitatively estimate the ground from these survey results. A few geotechnical researcher groups have been simplified measurement system of the electro-physical properties, which was intermittently operating by the necessity. Recent strong concern about $CO_2$ underground storage and development of gas hydrate projects have urged many advanced countries. The electro-physical properties estimation of the deep object stratum is very importance for basic information of these research. So, advanced countries have a high-end measurement system with high temperature(200 degrees) and pressure(300 MPa), also they have been a lot of experience and know-how on the electro-physical properties measurement.

  • PDF

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.

Impurity variation in high purity silica mineral with different leaching methods (실리카광물의 산침출 정제방법에 따른 불순물 변화 연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Chung, Soo Bok;Chae, Young Bae
    • Analytical Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.332-337
    • /
    • 2008
  • Purification of silica mineral was compared with various leaching methods such as shaking, stirring, ultrasonic with 2.5% HF/HCl solution. Among them, ultrasonic method showed a best leaching effect. From the leaching experiment, Na, K, Fe, Al exist as the major impurity elements. The removal rate of Al, Fe showed little difference with various leaching methods but Ca, Mn, Na were very different. Four kinds of silica mineral (>99% purity) after physical purification treatment were used for ultrasonic leaching experiment. Among them IN-Si had a highest impurity removal rate. Ca, Cr, K, Zn were removed above 80% using ultrasonic leaching method and Fe was also removed above 60%. But Al showed 10~60% removal rate with different samples.

Simulation of thermal distribution with the effect of groundwater flow in an aquifer thermal energy storage (ATES) system model (대수층 축열 에너지(ATES) 시스템 모델에서 지하수 유동 영향에 의한 지반내 온도 분포 예측 시뮬레이션)

  • Shim, Byoung-Ohan
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Aquifer Thermal Energy Storage (ATES) can be a cost-effective and renewable geothermal energy source, depending on site-specific and thermohydraulic conditions. To design an effective ATES system having the effect of groundwater movement, understanding of thermohydraulic processes is necessary. The heat transfer phenomena for an aquifer heat storage are simulated by using FEFLOW with the scenario of heat pump operation with pumping and waste water reinjection in a two layered confined aquifer model. Temperature distribution of the aquifer model is generated, and hydraulic heads and temperature variations are monitored at the both wells during 365 days. The average groundwater velocities are determined with two hydraulic gradient sets according to boundary conditions, and the effect of groundwater flow are shown at the generated thermal distributions of three different depth slices. The generated temperature contour lines at the hydraulic gradient of 0.001 are shaped circular, and the center is moved less than 5 m to the direction of groundwater flow in 365 days simulation period. However at the hydraulic gradient of 0.01, the contour center of the temperature are moved to the end of east boundary at each slice and the largest movement is at bottom slice. By the analysis of thermal interference data between two wells the efficiency of the heat pump system model is validated, and the variation of heads is monitored at injection, pumping and no operation mode.

  • PDF

A Study on the Improvement of the Water Source Energy Distribution Regulation for High Efficient Data Center Cooling System in Korea (데이터센터 냉방시스템 고효율화를 위한 국내 수열에너지 보급 제도 개선에 관한 연구)

  • Cho, Yong;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2021
  • In this study, the current regulation of the water source energy, one of the renewable energy, was analyzed, and the improvement plan for the high efficient data center cooling system was suggested. In the improvement plan, the design and construction guidelines of the water source energy system permit to adopt the cooling and heating system with or without heat pump. In addition, it should also include the system operated in the cooling mode only all year-round. The domestic test standards to consider the water source operating conditions should be developed. Especially, it is highly recommended that the test standards to include the system with forced cooling and free cooling modes related with the enhanced data center cooling system adopting the water source energy.

A Study on Thermal Properties of Rocks from Gyeonggi-do Gangwon-do, Chungchung-do, Korea (경기도, 강원도, 충청도 일대의 암석 열물성 특성 연구)

  • Park, Jeong-Min;Kim, Hyoung-Chan;Lee, Young-Min;Song, Moo-Young
    • Economic and Environmental Geology
    • /
    • v.40 no.6
    • /
    • pp.761-769
    • /
    • 2007
  • We made 712 thermal property measurements on igneous, metamorphic and sedimentary rock samples from Gyeonggi-do, Gangwon-do and Chungchung-do, Korea. The average thermal conductivities of igneous, metamorphic and sedimentary rocks are 3.58W/m-K, 4.16W/m-K and 4.53W/m-K, respectively. Thermal conductivity of granite and gneiss are 2.13-5.87W/m-K and 2.26-6.67W/m-K, with average values of 3.57W/m-K and 3.945W/m-K, respectively. The average of thermal diffusivities are $1.43mm^2/sec\;and\;1.55mm^2/sec$, respectively; the average of specific heat values are 0.914J/gK, 0.912J/gK for granite and gneiss samples, respectively. The thermal conductivity of a rock type generally have a wide range because it depends on various factors such as dominant mineral phase, micro-structure, anisotropy, and so on.