• 제목/요약/키워드: geothermal resources

Search Result 217, Processing Time 0.026 seconds

An Efficient 3D Inversion of MT Data Using Approximate Sensitivities (효율적인 3차원 MT 역산을 위한 다양한 감도의 이용)

  • Han, Nu-Ree;Nam, Myung-Jin;Kim, Hee-Joon;Lee, Tae-Jong;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.259-267
    • /
    • 2007
  • An efficient algorithm for inverting static-shifted magnetotelluric (MT) data has been proposed to produce a three-dimensional (3D) resistivity model. In the Gauss-Newton approach, computational costs associated with construction of a full sensitivity matrix usually make 3D MT inversion impractical. This computational difficulty may be overcome by using approximate sensitivities. We use four kinds of sensitivities in particular orders in the inversion process. These sensitivities are computed 1) analytically for an initial, homogeneous earth, 2) exactly for a current model, 3) approximately by the Broyden method, and 4) approximately using the previous adjoint fields. Inversion experiments with static-shifted synthetic and field MT data indicate that inversion results are highly dependent on characteristics of data and thus applying various combinations of sensitivities is helpful in obtaining a good image of the subsurface structure with reasonable computation time.

Magnetotelluric modeling considering vertical transversely isotropic electrical anisotropy (수직 횡등방성 전기적 이방성을 고려한 자기지전류탐사 모델링)

  • Kim, Bitnarae;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.232-240
    • /
    • 2015
  • Magnetotelluric (MT) survey investigates electrical structure of subsurface by measuring natural electromagnetic fields on the earth surface. For the accurate interpretation of MT data, the precise three-dimensional (3-D) modeling algorithm is prerequisite. Since MT responses are affected by electrical anisotropy of medium, the modeling algorithm has to incorporate the electrical anisotropy especially when analyzing time-lapse MT data sets, for monitoring engineered geothermal system (EGS) reservoir, because changes in different-vintage MT-data sets are small. This study developed a MT modeling algorithm for the simulation MT responses in the presence of electrical anisotropy by improving a pre-existing staggered-grid finite-difference MT modeling algorithm. After verifying the developed algorithm, we analyzed the effect of vertical transversely isotropic (VTI) anisotropy on MT responses. In addition, we are planning to extend the applicability of the developed algorithm which can simulate not only the horizontal transversely isotropic (HTI) anisotropy, but also the tiled transversely isotropic (TTI) anisotropy.

Assessment of seawater intrusion using geophysical well logging and electrical soundings in a coastal aquifer, Youngkwang-gun, Korea

  • Hwang Seho;Shin Jehyun;Park Inhwa;Lee Sangkyu
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.99-104
    • /
    • 2004
  • A combination of drilling, geophysical well logging, and electrical soundings was performed to evaluate seawater intrusion in Baeksu-eup, Youngkwang-gun, Korea. The survey area extends for over 24 $km^2$. To delineate the extent of seawater intrusion, 60 vertical electrical soundings (VES) have been carried out. Twelve wells were also drilled for the collection of hydrogeological, geochemical, and geophysical well logging data, to delineate the degree and vertical extent of seawater intrusion. To map the spatial distribution of seawater in this coastal aquifer, geophysical data and hydrogeochemical results were used, and the relation between the resistivity of groundwater and equivalent NaCl concentration was found. Layer parameters derived from VES data, various in-situ physical properties from geophysical well logging, and the estimated equivalent NaCl concentration were very useful for quantitative evaluation of seawater intrusion. Our approach for evaluating seawater intrusion can be considered a valuable attempt at enhancing the use of geophysical data.

Analysis of Groundwater Flow Characterization in Fractured Aquifer System (파쇄대 응회암 대수층의 지하수 유동 특성화 기법)

  • Kim Yong-Je;Kim Tae-Hee;Kim Kue-Young;Hwang Se-Ho;Chae Byung-Gon
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.33-44
    • /
    • 2005
  • On the basis of a stepwise and careful integration of various field and laboratory methods the analysis of groundwater flow characterization was performed with five boreholes (BH-1, -2, -3, -4, -5) on a pilot site of Natural Forest Park in Guemsan-gun, Chungcheongbook-do, Korea. The regional lineaments of NW-SE are primarily developed on the area, which results in the development of many fractures of NW-SE direction around boreholes made in the test site for the study. A series of surface geological survey, core logging, geophysical logging, tomography, tracer tests, and heat-pulse flowmeter logging were carried out to determine fracture characteristics and fracture connectivity between the boreholes. In the result of fracture connectivity analysis BH-1 the injection well has a poor connectivity with BH-2 and BH-3, whereas a good with BH-4 and BH-5. In order to analyse the hydraulic connectivity between BH-1 and BH-5, in particular, a conspicuous groundwater outflux in the depth of 12 m and influx in the depth of 65 m and 70 m, but partly in/outflux occurred in other depths in BH-5 were observed as pumping from BH-1. On the other hand, when pumping from BH-5 the strong outflux in the depths of 17 m and 70 m was occurred. The spatial connectivity between the boreholes was examined in the depth of 15 m, 67 m, and 71 m in BH-1 as well as in the depth of 15 m, 17 m, 22 m, 72 m, and 83 m in BH-5.

A Study on An Integrated GEO/TES with Geothermal Heat Exchanger and Thermal Ice Storage (지중열 교환기와 빙축열조(Thermal Ice Storage)를 연계시킨 통합 지중열-빙축열조 시스템(Integrated GEO/TES))

  • Lohrenz ED.;Hahn Jeongsang;Han Hyuk Sang;Hahn Chan;Kim Hyoung Soo
    • Economic and Environmental Geology
    • /
    • v.38 no.6 s.175
    • /
    • pp.717-729
    • /
    • 2005
  • Peak cooling load of large buildings is generally greater than their peak heating load. Internal and solar heat gains are used fur selection of adquate equipment in large building in cold winter climate like Canada and even Korea. The cost of geothermal heat exchanger to meet the cooling loads can increase the initial cost of ground source heat pump system to the extend less costly conventional system often chosen. Thermal ice storage system has been used for many years in Korea to reduce chiller capacity and shift Peak electrical time and demand. A distribution system designed to take advantage of heat extracted from the ice, and use of geothermal loop (geothermal heat exchanger) to heat as an alternate heat source and sink is well known to provide many benifits. The use of thermal energy storage (TES) reduces the heat pump capacity and peak cooling load needed in large building by as much as 40 to $60\%$ with less mechanical equipment and less space for mechanical room. Additionally TES can reduce the size and cost of the geothermal loop by 1/3 to 1/4 compared to ground coupled heat pump system that is designed to meet the peak heating and cooling load and also can eliminate difficuties of geothermal loop installation such as space requirements and thermal conditions of soil and rock at the urban area.

Development of Efficient Monitoring Algorithm at EGS Site by Using Microseismic Data (미소진동 자료를 이용한 EGS 사이트에서의 효율적인 모니터링 알고리듬 개발)

  • Lee, Sangmin;Byun, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.111-120
    • /
    • 2016
  • In order to enhance the connectivity of fracture network as fluid path in enhanced/engineered geothermal system (EGS), the exact locating of hydraulic fractured zone is very important. Hydraulic fractures can be tracked by locating of microseismic events which are occurred during hydraulic fracture stimulation at each stage. However, since the subsurface velocity is changed due to hydraulic fracturing at each stage, in order to find out the exact location of microseismic events, we have to consider the velocity change due to hydraulic fracturing at previous stage when we perform the mapping of microseimic events at the next stage. In this study, we have modified 3D locating algorithm of microseismic data which was developed by Kim et al. (2015) and have developed 3D velocity update algorithm using occurred microseismic data. Eikonal equation which can efficiently calculate traveltime for complex velocity model at anywhere without shadow zone is used as forward engine in our inversion. Computational cost is dramatically reduced by using Fresnel volume approach to construct Jacobian matrix in velocity inversion. Through the numerical test which simulates the geothermal survey geometry, we demonstrated that the initial velocity model was updated by using microseismic data. In addition, we confirmed that relocation results of microseismic events by using updated velocity model became closer to true locations.

Review of small hydropower system

  • Jantasuto, Orawan
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.101-112
    • /
    • 2015
  • Renewable energy resources play an important part in the world's future. Renewable energy sources have the following components: biomass, geothermal, solar thermal, directs solar, wind, tidal and hydropower. Hydropower is still the most efficient way to generate electricity worldwide. Hydropower projects can contribute as a cheap energy source, as well to encourage the development of small industries across a wide range of new technology; furthermore hydropower systems use the energy in flowing and falling water to produce electricity or mechanical energy. Hydropower systems are classified as large, medium, small, mini and micro according to their installed power generation capacity, as do the following components: water turbines, control mechanisms and electrical transmissions. In this article a review of small hydropower systems has been done on the principles surrounding the fundamentals of hydraulic engineering, the fundamentals of hydrology, identification of sites and economic analysis.

An Analysis on Applicability of Geophysical Exploration Methods to Monitoring Polymer-flooding (물리탐사 기법들의 화학공법 모니터링 적용성 분석)

  • Cheon, Seiwook;Park, Chanho;Ku, Bonjin;Nam, Myung Jin;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.143-153
    • /
    • 2015
  • Polymer flooding for enhancing hydrocarbon production injects into a reservoir polymer solution that is viscous. It is very important to monitor the behavior pattern of the polymer solution in order to evaluate the effectiveness of polymer flooding. To monitor the distribution of polymer solution and thus fluid substitution within the reservoir, we first construct seismic and resistivity rock physics models (RPMs), which are functions of reservoir parameters such as rocks and type of fluid, fluid saturation. For the seismic and resistivity RPMs, responses of seismic and electromagnetic (EM) tomography are numerically simulated as polymer injection, using two dimensional (2D) staggered-grid finite difference elastic modeling and 2.5D finite element EM modeling algorithms, respectively. In constructing RPM for EM tomography, three different reservoir rocks are considered: clean-sand, dispersed shale-sand, and sand-shale lamination rocks. The polymer solution is assumed to have 2 wt% of polymer as normally generated, while water is freshwater or saltwater. Further, neutron logging is also considered to check its sensitivity to polymer flooding. The techniques discussed in the paper are important in monitoring not only hydrocarbon but also geothermal reservoirs.

Response Analysis of Data Acquired by Marine Loop Electromagnetic System Using Three-Dimensional Modeling Based on Integral Equation (적분방정식 기반의 3차원 모델링을 이용한 소형 루프형 해양 전자탐사 자료의 반응 분석)

  • Ko, Hwicheol;Park, In Hwa;Lee, Seong Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.1
    • /
    • pp.21-27
    • /
    • 2014
  • We analyzed response patterns of test field data acquired with new small loop electromagnetic (EM) system using three-dimensional (3D) electromagnetic modeling code. The size and shape of a conductor was adopted as experimental parameters for EM modeling to understand influencing factors of the response patterns due to a metallic object on the seafloor. Obtaining the responses for four models of difference sizes and shapes through 3D EM modeling, we confirmed that the shape of the object have a more critical factor on the response pattern than size. We also calculated "ppm" values with respect to different altitudes of the sensor and source frequencies. The modeling results show that the consistency of sensor altitude is important and imaginary part of ppm response is more sensitive than real part. We also visualized the contour map of the real and imaginary part of ppm value as a function of frequency and altitude so that we can estimate proper altitude for source frequency band of our survey system. The results of this paper are anticipated to give proper parameters in survey construction for seafloor massive sulfide deposit.

Geochemistry and Sm-Nd isotope systematics of Precambrian granitic gneiss and amphibolite core at the Muju area, middle Yeongnam Massif (영남육괴 중부 무주 지역에 위치하는 선캠브리아기 화강편마암 및 앰피볼라이트 시추코아의 Sm-Nd 연대 및 지구화학적 특징)

  • Lee Seung-Gu;Kim Yongje;Kim Kun-Han
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.127-140
    • /
    • 2005
  • The Samyuri area of Jeoksang-myeon, Muju-gun at the Middle Yeongnam Massif consists of granitic gneiss, porphyroblastic gneiss and leucocratic gneiss, which correspond to Precambrian Wonnam Series. Here we discuss a geochemical implication of the data based on major element composition, trace element, rare earth element (REE), Sm-Nd and Rb-Sr isotope systematics of the boring cores in the granite gneiss area. The boring cores are granitic gneiss (including biotite gneiss) and amphibolite. The major and trace element compositions of granitic gneiss and amphibolite suggest that the protolith belongs to TTG (Tonalite-Trondhjemite-Granodiorite) and tholeiitic series, respectively. Chondrte-normalized REE patterns vary in LREE, HREE and Eu anomalies. The granitic gneiss and amphibolite have Sm-Nd whole rock age of $2,026{\pm}230(2{\sigma})$ Ma with an initial Nd isotopic ratio of $0.50979{\pm}0.00028(2{\sigma})$ (initial ${\epsilon}_{Nd}=-4.4$), which suggests that the source material was derived from old crustal material. Particularly, this initial ${\epsilon}$ Nd value belongs to the range of the geochemical evolution of Archean basement in North-China Craton, and also corresponds to the initial Nd isotope evolution line by Lee et al. (2005). In addition, chondrite-normalized REE pattern and initial Nd value of amphibolite are very similar to those of juvenile magma in crustal formation process.