• Title/Summary/Keyword: geothermal heat pump

Search Result 344, Processing Time 0.023 seconds

Design Guidlines of Geothermal Heat Pump System Using Standing Column Well (수주지열정(SCW)을 이용한 천부지열 냉난방시스템 설계지침)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang;Hahn, Chan;Kim, Hyong-Soo;Jeon, Jae-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.5 s.180
    • /
    • pp.607-613
    • /
    • 2006
  • For the reasonable use of low grade-shallow geothermal energy by Standing Column Well(SCW) system, the basic requirements are depth-wise increase of earth temperature like $2^{\circ}C$ per every 100m depth, sufficient amount of groundwater production being about 10 to 30% of the design flow rate of GSHP with good water quality and moderate temperature, and non-collapsing of borehole wall during reinjection of circulating water into the SCW. A closed loop type-vertical ground heat exchanger(GHEX) with $100{\sim}150m$ deep can supply geothermal energy of 2 to 3 RT but a SCW with $400{\sim}500m$ deep can provide $30{\sim}40RT$ being equivalent to 10 to 15 numbers of GHEX as well requires smaller space. Being considered as an alternative of vertical GHEX, many numbers of SCW have been widely constructed in whole country without any account for site specific hydrogeologic and geothermal characteristics. When those are designed and constructed under the base of insufficient knowledges of hydrgeothermal properties of the relevant specific site as our current situations, a bad reputation will be created and it will hamper a rational utilization of geothermal energy using SCW in the near future. This paper is prepared for providing a guideline of SCW design comportable to our hydrogeothermal system.

Performance Analysis of a Geothermal Heat Pump System Operated by a Diesel Engine (I) - Soil temperature prediction in Pusan and Chinju - (엔진구동 지열 열펌프의 성능 분석 (I) - 부산.진주지방 지중온도 예측 -)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.135-146
    • /
    • 1998
  • The equation to predict the soil temprature of Pusan and Chinju city as a function of time and soil depth for the geothermal energy utilization system and agriculture was devised. The equation was $T(x,t)\;=\;Tm\;-\;To{\cdot}ExP(-{\xi}){\cdot}cos{{\omega}{\cdot}[t-to-x/(2{\cdot}{\alpha}{\cdot}{\omega})^{0.5}]}$ with the soil thermal diffusivity, ${\alpha},\;of\;0.4\;\textrm{m}^2/day,\;0.0375\;\textrm{m}^2/day$ and phase zero point, to, of 24 days, 22.4 days in Pusan and Chinju city, respectively, during ten years from 1987 to 1996. The predicted and measured soil temperatures agreed well with the coefficient of determination of 0.95 at the soil depth of 0.0, 0.5, 1.0, 3.0, 5.0 m. The maximum and minimum temperature in Pusan 3.7, $30.1^{\circ}C$ at soil surface and 14.3, $18.0^{\circ}C$ at the depth of 5.0 m. The total mean temperature of soil in Pusan and Chinju city was about 16.3, $16.0^{\circ}C$, respectively.

  • PDF

Comparison Study of Air-conditioning Systems using LCC Analysis (LCC를 이용한 공조 방식별 비교 연구)

  • Kim, Joung-Kuk;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.12-18
    • /
    • 2012
  • The purpose of this study is to make an economic analysis(Life cycle cost) of selecting optimal air conditioning system for a research building which is 8 stories with a total floor area of $32,010m^2$. Energy consumptions of three proposed air-conditioning systems(Alt-1,2,3) that reflect the government green-growth policy are calculated and compared. The results show that life cycle cost of Alt-3(Ventilation DX AHU+EHP) is less than Alt-1(EHP+ventilation DX AHU) by 5.1%, and Alt-2(Absorption chiller/heater+EHP) by 34.3%. Annual energy consumption of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 37.4%. Annual $CO_2$ emission of Alt-3 is less than Alt-1 by 9.9%, and Alt-2 by 0.2%.

A Study on the Energy Performance Evaluation of Zero Energy House in Zero Energy Town (제로에너지타운 내 주택 에너지 성능 평가에 관한 연구)

  • Lee, Wang-Je;Baek, Nam-Choon;Lee, Kyoung-Ho;Heo, Jae-Hyeok
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • In this study, energy performance analysis of houses in zero energy demonstration town(ZeT) was carried out using the monitoring results. This ZeT was composed 29 zero energy individual houses(ZeH) which were applied passive as well as active technologies. The results are as follows. (1) Residents are generally considered to have been lacking basic mind to save energy, (2) In particular, average yearly total energy consumption per house is 12,834 kWh and specific heating energy is $53.2kWh/m^2{\cdot}yr$ which is higher than that of passive house. This is because of one of the reason just pointed out in subsection (1). (3) Most part of the residual energy load are supplied with only renewable energy, but not operating energy for geothermal heat pump which is use of cheap electricity.

A Study on Regional Distribution of the Ground Effective Thermal Conductivity (지중 유효 열전도도의 지역별 분포)

  • Kong, Hyoung Jin;Kwon, Soon-Ki;Ji, Seung Gyu
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.43-47
    • /
    • 2016
  • Ground source heat pump(GSHP) systems is known as environmental friendly and energy saving. Especially a ground heat exchanger is an important unit that determines the thermal performance of a system and initial cost. In design phase of vertical GSHP system, it is recommended that the effective borehole thermal resistance, be determined from in-situ thermal response test. In this study, ground effective thermal conductivity was categorized by a region. As a result of the study, the ground thermal conductivity of national average was analyzed as 2.56 W/mK. The highest regional average of thermal conductivity is 2.68 W/mK in Seoul, and the lowest is 2.28 W/mK in Busan. Also, the thermal conductivity on the coast has been analyzed approximately 30% lower than the average.

Study on physical characteristics of Graphite-added bentonite grout for backfilling closed-loop groud heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재로서 흑연(Graphite)을 첨가한 벤토나이트 그라우트재의 물리적 특성연구)

  • Lee, Kang-Ja;Gil, Hu-Jeong;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Pum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.179-187
    • /
    • 2009
  • Bentonite-based grouting has been popularly used to seal a borehole installed for a closed-loop vertical ground heat exchanger in a geothermal heat pump system (GHP) because of its high swelling potential and low hydraulic conductivity. The bentonite-based grout, however, has relatively lower thermal conductivity than that of ground formation. Accordingly, it is common to add some additives such as silica sand to the bentonite-based grout for enhancing thermal performance. In this study, graphite is adapted to substitute silica sand as an addictive because graphite has very high thermal conductivity. The effect of graphite on the thermal conductivity of bentonite-based grouts has been quantitatively evaluated for seven bentonite grouts from different product sources. In addition, comparisons of viscosity between applications of graphite and silica sand as additives has been carried out. In conclusion, using graphite has thermal conductivity about three times higher than that of silica sand.

  • PDF

Influences of Power Fluctuation on In-Situ Ground Thermal Response Testing (지중 열반응 현장시험에서 소비전력 변동의 영향)

  • Kim, Jin-Sang;Park, Keun-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.707-712
    • /
    • 2006
  • Knowing the ground thermal conductivity is very importnat in designing ground heat exchangers. Knowledge of the ground soil and rock composition information dose not guarantee the prediction of accurate thermal information. In Situ testing of ground heat exchangers is becoming popular. However, in situ testing are performed at construction sites in real life. Adequate data collection and analysis are not easy mainly due to poor power quality. Power fluctuation also causes the fluctuation of received data. The power quality must be maintained during the entire in situ testing processes. To accurately analyse the test data, the understanding of the response of the power fluctuation is essential. Testing under the power quality varied by tester is very difficult. Analyzing power variation by numerical simulation is a realistic option. By varying power in a sinosuidal manner, its effects on predicting thermal conductivity from thermal response plots made from the test data are examined.

  • PDF

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

A Study on the Proposal of Building Technologies for Reducing $CO_2$ Emission of Buildings(Focused on the Multi-Family Residential Buildings) (건물의 $CO_2$ 배출 저감 건축기술요소 제안에 관한 연구(공동주택을 중심으로))

  • Lee, Jong-Sik;Kang, Hae-Jin;Park, Jin-Chul;Rhee, Eon-Ku
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.91-96
    • /
    • 2009
  • First, the base model of multi-family residential buildings are selected, and then the $CO_2$ reduction building technologies that are applicable for multi-family residential buildings are induced by analyzing the examples and then an optimal plan for when the $CO_2$ reduction building technologies can be integrated and applied to the base model was formulated. In the results of converting the energy consumption and reduction amount from the building technologies into $CO_2$ emissions to analyze the distribution ratio compared to the entire $CO_2$ emissions; the heat recovery ventilator is 0.5%, the photovoltaic system is $1.9%{\sim}5.9%$, the solar hot water heating system is $6.3%{\sim}13.1%$ and the ge thermal heat-pump system is 39.0% when both heating and hot water heating are applied. An optimally integrated application method for the building technologies is in charge of heating and hot water heating through the geothermal source heat pump system and in charge of the electricity load through the photovoltaic system(45.2%).

  • PDF

Real-time steady state identification technology of a heat pump system to develop fault detection and diagnosis system (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.282-287
    • /
    • 2008
  • Identification of steady-state is the first step in developing a fault detection and diagnosis (FDD) system. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representing measurements were selected as key features for steady-state detection. The optimized moving window size and the feature thresholds was suggested through startup transient test and no-fault steady-state test. Performance of the steady-state detector was verified during indoor load change test. From the research, the general methodology to design a moving window steady-state detector was provided for vapor compression applications.

  • PDF