• 제목/요약/키워드: geotechnics

검색결과 87건 처리시간 0.019초

필댐의 3차원 기하 효과에 따른 전기비저항 왜곡 효과 분석 (Analysis of Distortion Effect of Resistivity Data Due to 3D Geometry of Fill Dam)

  • 오석훈;김형수
    • 지구물리
    • /
    • 제8권4호
    • /
    • pp.211-214
    • /
    • 2005
  • CFRD (콘크리트 표면 차수벽형 석괴댐)에서 수행한 전기비저항 탐사 결과, 하부에서 매우 낮은 비저항대가 관측되었다. 일반적으로 CFRD 형식의 댐은 내부 포화가 발생하지 않는 것으로 알려져 있으나, 금번 조사에서 하부 20m 깊이에서 일정하게 저비저항대가 발견되어 이에 대한 검토를 위해 3차원 해석을 수행하였다. 탐사 당시의 수위는 댐 정상부에서 10 m 정도 내려가 있는 상태였다. 첫 탐사 이후 6개월이 지난 후에 이루어진 탐사에서도 비슷한 양상을 보이고 있었다. 이에 대한 해석을 위해서 조사 댐의 모양을 대상으로 3차원 순산 모델링을 수행하고, 이에 대한 2차원 역산 해석을 적용하여 기존 해석 방법의 오류 가능성을 검토하였다. 또한 비저항 조사가 많이 적용된 중심코아형 댐의 경우의 사례와 비교하였다. 해석 결과, 3차원 댐체 구조에 대한 2차원 역산 해석은 저수부의 수위와 밀접한 관련을 갖는 것으로 보이며, 3차원의 사다리꼴 기하구조로 인하여 댐 내부에 비저항의 이상대가 존재할 경우에도 그 민감도가 떨어지는 것으로 분석되었다.

  • PDF

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

Intelligent design of retaining wall structures under dynamic conditions

  • Yang, Haiqing;Koopialipoor, Mohammadreza;Armaghani, Danial Jahed;Gordan, Behrouz;Khorami, Majid;Tahir, M.M.
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.629-640
    • /
    • 2019
  • The investigation of retaining wall structures behavior under dynamic loads is considered as one of important parts for designing such structures. Generally, the performance of these structures is under the influence of the environment conditions and their geometry. The aim of this research is to design retaining wall structures based on smart and optimal systems. The use of accuracy and speed to assess the structures under different conditions is one of the important parts sought by designers. Therefore, optimal and smart systems are able to have better addressing these problems. Using numerical and coding methods, this research investigates the retaining wall structure design under different dynamic conditions. More than 9500 models were constructed and considered for modelling design. These designs include height and thickness of the wall, soil density, rock density, soil friction angle, and peak ground acceleration (PGA) variables. Accordingly, a neural network system was developed to establish an appropriate relationship between data to obtain safety factor (SF) of retaining walls under different seismic conditions. Different parameters were analyzed and the effect of each parameter was assessed separately. According to these analyses, the structure optimization was performed to increase the SF values. The optimal and smart design showed that under different PGA conditions, the structure performance can be appropriately improved while utilization of the initial (or basic) parameters leads to the structure failure. Therefore, by increasing accuracy and speed, smart methods could improve the retaining structure performance in controlling the wall failure. The intelligent design process of this study can be applied to some other civil engineering applications such as slope stability.

현수교 지중정착식 앵커리지의 거동특성과 국내 도서지역에서의 적용성에 대한 연구 (A Study on the Physical Behavior and the Applicability of Rock Anchorage System of a Suspension Bridge in Domestic Island)

  • 양의규;최영석;최경섭;김대학;전용준
    • 한국지반공학회논문집
    • /
    • 제37권2호
    • /
    • pp.33-48
    • /
    • 2021
  • 현수교의 지중정착식 앵커리지는 기초 암반이 신선할 경우에 적용될 수 있는 형식으로, 앵커리지 형식 중 환경성과 경제성 측면에서 뚜렷한 장점이 있다. 그러나 케이블 하중 재하시 암반의 거동특성이 아직 명확하게 규명되지 않았고 설계기법이 정립되어 있지 않아, 실무자들이 구조물 계획을 수립하는데 많은 어려움을 겪고 있다. 본 연구에서는 국내 도서지역의 경암 지반에 계획된 지중정착식 앵커리지를 대상으로 모형실험과 수치해석을 수행하고 지지암반의 거동 특성을 평가하였으며, 자중과 전단력으로 케이블 하중에 저항하는 비대칭 형태의 암반 쐐기 블록을 제안하였다. 또한 경암 지반에서 강연선 홀 설치를 위한 실규모 시험천공을 실시하고, 경사 천공의 정밀도를 확인하여 지중정착식 앵커리지의 적용 가능성을 평가하였다.

부유형 PS(SPS) 속도검층을 통한 전단파 특성 고찰 (Investigation of S-wave Velocity Based on SPS Field Tests)

  • 정남훈;이종규
    • 한국지반공학회논문집
    • /
    • 제24권10호
    • /
    • pp.161-174
    • /
    • 2008
  • 국내 점성토 지반 및 풍화토 지반의 전단파속도 특성을 파악하기 위하여 표준관입시험(SPT), 부유형 PS 속도검층(SPS) 및 다운홀 등의 시험을 수행하였으며, SPT와 SPS 속도검층 결과로부터 지층별 전단파 속도를 분석하였다. 본 연구대상 지역에서 측정된 전단파 속도를 점성토와 풍화토로 나누어 분석하여 지반강도와 전단파속도와의 상관관계로부터 경험식을 제안할 수 있었는데, 점성토에서는 여러 학자들에 의하여 기존에 제안된 경험식과 유사한 결과를 나타내었으나 풍화토에서는 기존 경험식에 의한 값과 연구대상 지역에서 측정한 실측값과는 다소 차이가 있음을 확인하였다. 아울러 연구 대상지역에 대한 전단파 속도의 깊이에 따른 영향을 제시하였고 이 결과를 Ohta 등(1978)의 경험식과 비교, 검토하였다.

액상화 발생 지반에 대한 보강공법 별 보강 효과 및 적용성 분석 (Evaluation of Reinforcement Efficiency and Applicability Using a Reinforcement Method for Liquefiable Ground)

  • 유민택;한진태;박영준;김석중
    • 한국지반공학회논문집
    • /
    • 제39권5호
    • /
    • pp.41-50
    • /
    • 2023
  • 본 연구에서는 국내외에서 널리 사용되고 있는 액상화 보강 및 지반 보강 공법들에 대해 공법 특성별로 검토하고, 각 보강방안의 경제성 및 보강효과를 분석하였다. 또한 분석 결과를 바탕으로 신설구조물 및 기존구조물의 액상화 보강시 적절한 보강 방안 적용성 평가를 수행하였다. 보강방안 별 경제성, 보강효과를 바탕으로 보강 방안의 적용성을 평가한 결과, 신설 구조물의 보강시에는 대형장비를 적용하여 시공성이 확보되는 다짐계열 공법이 유리하며, 기존 구조물에서는 저유동성 몰탈 주입공법(C.G.S공법) 및 고압분사공법(J.S.P공법)의 적용이 적절할 것으로 판단된다.

Study on stability and free vibration behavior of porous FGM beams

  • Bennai, Riadh;Atmane, Redhwane Ait;Bernard, Fabrice;Nebab, Mokhtar;Mahmoudi, Noureddine;Atmane, Hassen Ait;Aldosari, Salem Mohammed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.67-82
    • /
    • 2022
  • In this paper, buckling and free vibration of imperfect, functionally graded beams, including porosities, are investigated, using a higher order shear strain theory. Due to defects during the manufacturing process, micro porosities may appear in the material, hence the appearance of this imperfection in the structure. The material properties of the beams are assumed to vary regularly, with power and sigmoid law, in the direction of thickness. A novel porosity distribution affecting the functionally graded volume fraction is presented. For the compact formulation used for cementite-based materials and already used in P-FGM, we have adapted it for the distribution of S-FGM. The equations of motion in the FG beam are derived using Hamilton's principle. The boundary conditions for beam FG are assumed to be simply supported. Navier's solution is used to obtain the closed form solutions of the FG beam. The numerical results of this work are compared with those of other published research to verify accuracy and reliability. The comparisons of different shear shape functions, the influence of porosity, thickness and inhomogeneity parameters on buckling and free vibration of the FG beam are all discussed. It is established that the present work is more precise than certain theories developed previously.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.

Investigation of the behavior of an RC beam strengthened by external bonding of a porous P-FGM and E-FGM plate in terms of interface stresses

  • Zahira Sadoun;Riadh Bennai;Mokhtar Nebab;Mouloud Dahmane;Hassen Ait Atmane
    • Structural Monitoring and Maintenance
    • /
    • 제10권4호
    • /
    • pp.315-337
    • /
    • 2023
  • During the design phase, it is crucial to determine the interface stresses between the reinforcing plate and the concrete base in order to predict plate end separation failures. In this work, a simple theoretical study of interface shear stresses in beams reinforced with P-FGM and E-FGM plates subjected to an arbitrarily positioned point load, or two symmetrical point loads, was presented using the linear elastic theory. The presence of pores in the reinforcing plate distributed in several forms was also taken into account. For this purpose, we analyze the effects of porosity and its distribution shape on the interracial normal and shear stresses of an FGM beam reinforced with an FRP plate under different types of load. Comparisons of the proposed model with existing analytical solutions in the literature confirm the feasibility and accuracy of this new approach. The influence of different parameters on the interfacial behavior of reinforced concrete beams reinforced with functionally graded porous plates is further examined in this parametric study using the proposed model. From the results obtained in this study, we can say that interface stress is significantly affected by several factors, including the pores present in the reinforcing plate and their distribution shape. Additionally, we can conclude from this study that reinforcement systems with composite plates are very effective in improving the flexural response of reinforced RC beams.

An experimental and analytical study of the sound wave propagation in beam formed from rubberized concrete material

  • Salhi Mohamed;Safer Omar;Dahmane Mouloud;Hassene Daouadji Nouria;Alex Li;Benyahia Amar;Boubekeur Toufik;Badache Abdelhak
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.127-142
    • /
    • 2024
  • The amount of wave propagation through a rubber concrete construction is the subject of the current investigation. Rubber tire waste was used to make two different types of cement mixtures. One type contains sand substitute in amounts ranging from 15% to 60% of the total volume, while the other has gravel with diameters of 3/8 and 8/15 and 15% sand in the same mixture. A wide variety of concrete forms and compositions were created, and their viscous and solid state characteristics were assessed, along with their short-, medium-, and long-term strengths. Diffusion, density, mechanical strength resistance to compressive force, and ultrasound wave propagation were also assessed. The water-to-cement ratio and plasticizer were used in this investigation. In the second part of the study, an analytical model is presented that simulates the experimental model in predicting the speed of waves and the frequencies accompanying them for this type of mixture. Higher order shear deformation beam theory for wave propagation in the rubberized concrete beam is developed, considering the bidirectional distribution, which is primarily expressed by the density, the Poisson coefficient, and Young's modulus. Hamilton's concept is used to determine the governing equations of the wave propagation in the rubberized concrete beam structure. When the analytical and experimental results for rubber concrete beams were compared, the outcomes were very comparable. The addition of rubber gravel and sandy rubber to the mixture both resulted in a discernible drop in velocities and frequencies, according to the data.