• Title/Summary/Keyword: geotechnical field investigation

Search Result 169, Processing Time 0.024 seconds

Investigation on Leachate Leakage Around Waste Landfill (폐기물매립지 주변 침출수 누출조사)

  • 정하익;김상근;정길수;진현식;조동행;이창열
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.69-72
    • /
    • 1999
  • Now there has been a steady increase in the field of geoenvironmental engineering projects where geotechnical engineering has been combined with environmental concerns. Many of these projects involve some investigation on leachate flume in the waste landfill. In this study, investigation on leachate around the waste landfill was carried out to detect the leachate leaking area. Many techniques such as geophysical, drilling and sampling method were applied. As a result of this investigation, the concentration of leachate and the point of leachate leaking around landfill were analysed.

  • PDF

Investigation on S-wave Velocity for The Marine Deposits in Incheon Coastal Area. (현장시험법을 통한 인천지역 해성퇴적토의 전단파 속도 특성 고찰)

  • Choi, Won-Il;Jeong, Nam-Hoon;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1340-1352
    • /
    • 2008
  • In this study, S-wave velocity range is gauged in every field test method at the total 5 locations in the marine deposits in Incheon area. field test method is accomplished the SPT(Standard Penetration Test), CPT(Cone Penetration Test), SPS(Suspension PS Logger), SCPT (Seismic Cone Penetration Test) and so on. The S-wave velocity of SCPT in the downhole test method is measured lower than SPS logger at the N value > 15 range. But at the N value < 15 range, SPS logger and SCPT result is measured same. In this result, although the soil strength of the downhole test method increased, the rate of S-wave velocity is tend to be slowed. This result shows that the downhole test is difficult to apply at the place that the intensity of soil is more extreme and harder soil. And it shows that the existing Imai(1982) type that is mostly used within the country is not suitable for the marine deposits. Thus, the empirical formula that can show the range of S-wave velocity in each N value for domestic soil is needed.

  • PDF

Economic Evaluation of Investigation Method Using Cost-Benefit Analysis (비용편익분석을 이용한 사면조사기법의 경제성 평가)

  • Kim, Yong-Soo;Jung, Soo-Jung;Ahn, Sang-Ro
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1076-1085
    • /
    • 2009
  • Recent heavy rains and typhoons broke down road slopes, which caused a hazard to safety. As a result, interests in the effective investment for disaster prevention is increasing. Measures of investigation method for slope have been taken, but the financial costs have never been analysed. This study applied the cost-benefit analysis theory used in public economics to the evaluation of the financial reasonability of management for slope. By applying cost-benefit analysis to road slope investigation method, the reduction of safety costs and resulting financial benefits can be seen and it also clarifies the reasonability and investment effects of slope management.

  • PDF

A Case Study on the Plan for Settlement Restraint by CGS (CGS 공법에 의한 지반침하억제 사례연구)

  • 천병식;여유현;김우종;황성식;김우철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.611-618
    • /
    • 2002
  • In this study the CGS as an injection method by low slump mortar was performed the pilot test to confirm the applicability of this method and the effectiveness of settlement restraint. From the results, there has been concluded the construction control standard such as an institutional diameter, space, depth, injection materials, Infection pressure etc. Also, there has been estimated the ground improvement effectiveness which has resulted from the field investigation and consolidation test etc. From the results, in the adjacent ground the CGS, generally, has been confirmed to in-crease ground strength to improve the consolidation characteristic obtained from the field investigation and consolidation test. Especially, the CGS which performed the larger stiffness to the ground has been concluded that the settlement restraint to the ground complicates the ground effect which Increases the bearing capacity and stress assignment. So, the CGS can be considered as an effective method to increase the bearing capacity as well as the settlement restraint of soft ground.

  • PDF

Geotechnical Applications of Industrial By-products for Reducing Environmental Impacts - ln the Case of Pulverized Coal Fly Ashes -

  • Kazuya Yasuhara;Sumio Horiuchi;Hideo Komine
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.29-62
    • /
    • 2001
  • Based on the results from investigation of behaviour of pulverized fly ashes (PFA) at laboratory and field, the way how to reduce the environmental impacts to geotechnical practices Is considered and described. In order to reduce discharged industrial by-products, it should primarily be emphasized that an effort are made as much as possible not to put into homing. Secondarily, an effort must be made to increase amount of utilization to geotechnical engineering practices. In addition, from an environmental point of view, we should challenge to create innovative materials which are eligible for controlling other wastes and remedying contamination m soils by using industrial byproducts which belong to wastes This Is a new concept in which the polluting materials can be eliminated by making use of wastes. Based on the above-stated concept, the previous and possible utilization of PFA is classified into: (1 ) reclamation, embankment or backfill material, (2) light weight geo-material, (8) soil stabilization/improvement, and (4) environmental material. The reason why PFA, in particular, slurry PFA has been used and will possibly be used more widely is due to the fact that PFA has the advantages : (i) low specific gravity leading to a light weight geomaterial, (ii) high pozzolanic activity enhancing strength, especially due to cement addition, and (iii) spherical shape of particles producing isotropy and then pumpability. As well as the concept of reducing geo-environmental impacts, the present text mainly describes the successful results at laboratory and field which have been obtained by the authors. The most important issue hi application of byproducts including PFA for geotechnical practices is to prevent leakage of polluted substances from sedimentary deposits, ground and earth structures. As one of possible techniques far achieving this purpose, a method of washing off the polluted substances by hot water is described.

  • PDF

Evaluation of Caisson Quay Wall Behavior during the 1995 Kobe Earthquake by Nonlinear Effective Stress Analysis (비선형 유효응력해석을 이용한 1995 Kobe 지진시 케이슨 안벽의 거동 평가)

  • Lee, Jin-sun;Noh, Gyeong-do
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.401-412
    • /
    • 2016
  • On Tuesday, January 17, 1995, an earthquake of magnitude 7.2 struck the Port of Kobe. In effect, the port was practically destroyed. After a hazard investigation, researchers reached a consensus to adopt a performance-based design in port and harbor structures in Japan. A residual displacement of geotechnical structures after an earthquake is one of the most important engineering demands in performance-based earthquake-resistant design. Thus, it is essential to provide reliable responses of geotechnical structures after an earthquake through various techniques. Today, a nonlinear explicit response history analysis(NERHA) of geotechnical structures is the most efficient way to achieve this goal. However, verification of the effective stress analysis, including post liquefaction behavior, is difficult to perform at a laboratory scale. This study aims to rigorously verify the NERHA by using well-defined field measurements, existing numerical tools, and constitutive models. The man-made, Port Island, in Kobe provides intensive hazard investigation data, strong motion records of 1995 Kobe earthquake, and sufficient engineering parameters of the soil. Two dimensional numerical analysis was conducted on the caisson quay wall section at Port Island subjected to the 1995 Kobe earthquake. The analysis result matches very well with the hazard investigation data. The NERHA procedure presented in this paper can be used in further studies to explain and examine the effects of other factors on the seismic behavior of gravity quay walls in liquefiable soil areas.

A Investigation on the Quality of Shotcrete for Appliance of High-Performance Shotcrete (고성능 숏크리트 적응 가능성 파악을 위한 숏크리트 품질특성 검토)

  • Ma Sang-Joon;Choi Jae-Seok;Kim Dong-Min;Kim Jae-Shin
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.131-141
    • /
    • 2005
  • Korea shotcrete technology has been developed by constructing underground space, roads and rails for expanding Social Overhead Capital. To late, importance of shotcrete is raised due to the efforts for semi-permanent use of underground structure and a long term safety. Shotcrete testing method and quality criterion have been developed continusously in abroad, but there are no standard and quality criterion of shotcrete in Korea. International quality criterion has been used to domestic conditions, so various problems are occurred in construction field, material, mixture, equipment, and so on. In this study, to establish standard of domestic shotcrete, both criteria and quality of shotcrete were investigated and opinion poll was performed in the construction field. Indoor and field test were performed to investigate appliance possibility of high-performance shotcrete.

  • PDF

Evaluation of Shear Wave Velocity Profiles by Performing Uphole Test Using SPT (표준관입시험을 이용한 업홀시험에서 전단파 속도 주상도의 도출)

  • 김동수;방은석;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Uphole test is a seismic field test using receivers on ground surface and a source in depth. In this paper, the uphole test using SPT(standard penetration test) which is economical and reliable for obtaining shear wave velocity profile was introduced. In the proposed uphole test, SPT sampler which is common in site investigation, was used as a source and several 1Hz geophones in line were used as receivers. Test procedures in field and interpretation methods for obtaining interval times and for determining shear wave velocity profile considering refracted ray path were introduced. Finally, uphole test was performed at three sites, and the applicability of the proposed uphole test was verified by comparing wave velocity profiles determined by the uphole test with the profiles determined by downhole test, SASW test and SPT-N values.

Construction of Efficient Downhole Seismic Testing System by the Round Robin Test (상호검증시험을 통한 효율적인 다운홀 탄성파 기법 수행 시스템의 구성)

  • Bang, Eun-Seok;Kim, Ki-Seog;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.133-147
    • /
    • 2007
  • Downhole seismic method is very economic and easy of operation because it uses only one borehole and simple surface source to obtain the shear wave velocity ($V_s$) profile of a site. Even though it is widely used by the site investigation companies, universities and institutes, however, the $V_s$ profile determined by downhole seismic method has often low reliability due to employment of wrong combinations of field losing equipment and interpretation method and deficiency of experience. Round robin test was performed and testing equipment and procedure were compared. Adequate downhole seismic testing equipment was constructed based on the comparison and verification study of the round robin test. The data acquisition and software interpretation were also developed for automation and quick test in field. Finally, the effectiveness and applicability were verified through the field test by using the constructed testing system.

Establishment and Verification of SPT-uphole method for Evaluating Shearwave Velocity of a site (지반의 전단파 속도 도출을 위한 SPT 업홀 기법의 확립 및 검증)

  • Bang, Eun-Seok;Kim, Jung-Ho;Seo, Won-Seok;Kim, Dong-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.142-152
    • /
    • 2008
  • SPT-Uphole method was introduced for the evaluation of near subsurface shear wave velocity (Vs) profile. In SPT-Uphole method, SPT (Standard Penetration Test) which is common in geotechnical site investigation was used as a source and several surface geophones in line were used as receivers. 1D shearwave velocity profile can be obtained in the manner of downhole method, Vs distribution map which is the triangular shape around the boring point can be developed by tomography inversion. To obtain the exact travel time information of shear wave component, a procedure using the magnitude summation of vertical and horizontal components was used based on the evaluation of particle motion at the surface. It was verified that proposed method could give reliable Vs distribution map through the numerical study using the FEM (Finite Element Method) model. Finally, SPT-Uphole method was performed and the feasibility of proposed method was verified in the field.

  • PDF