• Title/Summary/Keyword: geotechnical data

Search Result 1,222, Processing Time 0.026 seconds

Study on Statistical Method for Objective Evaluation of Tunnel Portal Slopes (객관적인 터널 갱구사면 평가를 위한 통계기법 연구)

  • Kwon, O-Il;Baek, Yong;Na, Jong-Hwa;Seo, Yong-Seok;Kim, Gyo-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.634-643
    • /
    • 2006
  • This study was intended to develop a high reliable technique by statistically processing on-site data with a general linear model, providing the basic data for construction, analysis of stability and establishment of maintenance measures for tunnel portal slopes in the future. This study evaluated the stability of a tunnel portal slope using a quantified technique, which is based on a general linear model. The important scores of each independent variable were allocated by using the ranges of the quantified values, based on the predicted coefficient of regression and the scores for categories of each independent variable were allocated so that those are equally spaced. The quantification model obtained from the results of evaluating the total data used for the quantification process provided precise results. In addition, it is expected that a more detail subdivision of response variables and sufficient data would produce a better stability evaluation standard.

  • PDF

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.

Development of AE/MS monitoring system and its application (AE/MS 모니터링시스템개발과 적용연구)

  • Cheon, Dae-Sung;Jung, Yong-Bok;Park, Chan;Synn, Joong-Ho;Jang, Hyun-Ick
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.199-210
    • /
    • 2008
  • Acoustic emission(AE)/Microseimsic(MS) activities are low-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is not easy to determine the precursor and initiation stress level of failure in displacement detection method. To overcome this problem, AE/MS techniques for detection of structure failure and damage have recently adopt in civil engineering. In this study, AE/MS monitoring system, which consist of sensor, data acquisition and operation program, is constructed with domestic technology. To verify and optimize the developed system, we are now carrying out the field application at an underground research laboratory and the developed AE/MS monitoring will be used in detecting of seismic events with various scales.

  • PDF

Geotechnical Characterization of the Eardo Seabed for Offshore Pile Foundation Design (해양말뚝 기초설계를 위한 이어도 해저지반의 특성화)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Kown, O-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.141-155
    • /
    • 1999
  • Korea Ocean Research & Development Institute(KORDI) conducted an offshore geotechnical investigation for the Eardo Ocean Research Station with the help of the Fugro International Limited at a site location approximately 152 km away from Mara Island, Korea. The primary purpose of the geotechnical investigation was to obtain information on soil and foundation conditions, and to develop foundation design data for a fixed offshore observation platform. This paper discussed the details of the geotechnical investigation and the foundation design recommendations for the Ocean Research Station. Clear recommendations were proposed for the foundation type of driven pile considering the existing soil conditions.

  • PDF

Electrical Resistivity Characteristic of Soils (흙의 전기비저항 특성)

  • Park, Sam-Gyu;Kim, Jung-Ho;Cho, Seong-Jun;Yi, Myeong-Jong;Son, Jeong-Sul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.847-854
    • /
    • 2004
  • The resistivity of soils depends on grains size, porosity, water saturation, pore fluid resistivity, caly contents and son on. It is very important to understand the relationship between resistivity and such physical properties of soils, in order to interpret and evaluate ground conditions by using resistivity data obtained from electrical resistivity prospecting. In this paper, to study the relationship between resistivity and physical properties of soils, the resistivity of glass beads and compacted soil samples both in saturated and unsaturated conditions is measured. As the results, the resistivity of saturated soils depends mainly on porosity and clay contents, while that of unsaturated soils is sensitive to compaction conditions, and decreases with increasing water content until the optimum water condition, that is the maximum dry density. But, the relationship between resistivity and water saturation for soils is unique, being independent of compaction energy. Also, the resistivity ratio decrease with increasing water saturation, followed by no significant change of resistivity ratio over 80 percent of water saturation (the optimum water content).

  • PDF

Ground Subsidence Risk Analysis on Correlation between Rainfall and Rainfall intensity (강우량과 강우강도에 따른 지반함몰 상관관계 분석)

  • Choi, Chang-Ho;Kim, Jin-Young;Kang, Jae-Mo;Lee, Sung-Yeol;Baek, Won-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.75-83
    • /
    • 2022
  • Recent settlements and sinkhole openings in urban areas have caused social problems such as damage to roads and structures, fear of the public, and loss of property. Several studies have demonstrated that surface subsidence and sinkhole opening are greatly affected by rainfall and rainfall intensity in urban areas. In this paper, we analyzed the relationship with the characteristics of recorded rainfall data using the ground subsidence database reported in major cities. The correlations were found using sedimentation and precipitation data from 2010 to 2014. The duration and intensity of a given precipitation have evolved to obtain an effect on ground sedimentation rate (SR). The results show that the relationship between SR and precipitation is asymptotic and can be modeled by a hyperbolic equation. Through this study, it is possible to predict the occurrence of ground subsidence due to precipitation in advance.

Application into Assessment of Liquefaction Hazard and Geotechnical Vulnerability During Earthquake with High-Precision Spatial-Ground Model for a City Development Area (도시개발 영역 고정밀 공간지반모델의 지진 시 액상화 재해 및 지반 취약성 평가 활용)

  • Kim, Han-Saem;Sun, Chang-Guk;Ha, Ik-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-230
    • /
    • 2023
  • This study proposes a methodology for assessing seismic liquefaction hazard by implementing high-resolution three-dimensional (3D) ground models with high-density/high-precision site investigation data acquired in an area of interest, which would be linked to geotechnical numerical analysis tools. It is possible to estimate the vulnerability of earthquake-induced geotechnical phenomena (ground motion amplification, liquefaction, landslide, etc.) and their triggering complex disasters across an area for urban development with several stages of high-density datasets. In this study, the spatial-ground models for city development were built with a 3D high-precision grid of 5 m × 5 m × 1 m by applying geostatistic methods. Finally, after comparing each prediction error, the geotechnical model from the Gaussian sequential simulation is selected to assess earthquake-induced geotechnical hazards. In particular, with seven independent input earthquake motions, liquefaction analysis with finite element analyses and hazard mappings with LPI and LSN are performed reliably based on the spatial geotechnical models in the study area. Furthermore, various phenomena and parameters, including settlement in the city planning area, are assessed in terms of geotechnical vulnerability also based on the high-resolution spatial-ground modeling. This case study on the high-precision 3D ground model-based zonations in the area of interest verifies the usefulness in assessing spatially earthquake-induced hazards and geotechnical vulnerability and their decision-making support.

A Study on Application Enhancement Plan through Utilization-Case Analysis of National Geotechnical Information GIS DB in Construction Field (국토지반정보 GIS DB의 건설분야 활용사례 분석을 통한 활용 향상방안 연구)

  • Jang, Yong-Gu;Lee, Jun-Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.2
    • /
    • pp.19-26
    • /
    • 2009
  • The Ministry of Land, Transport and Maritime Affairs(MLTM) project for the DB construction of national geotechnical information was automatically computerized the geotechnical investigation results on the construction site in 2007. So 'the rule for computerizing of geotechnical investigation results and its application' were promoted the establishment and applicable project. It was promoted in earnest that all organization and affiliation of MLTM, local governments included the project because of stabilization of the law from 2008. We have analyzed a application-ratio of geotechnical information about users of geotechnical information system and distribution data and established a plan of applying enhancement for the DB construction and DB utilization in 2008. In this paper, we propose the result for application-ratio analysis and application plan through the application-case study of national geotechnical information DB. In the application-ratio analysis, the analysis in the field shows the most high as 39% in construction planning and preliminary investigation, the analysis in the effect of capabilities shows the most high as 25% in the increased efficiency of business. Also the analysis in the field of application shows the most high as 95% a application-ratio of geotechnical information in architecture and civil.

  • PDF

Field experiment of ERT to detect a tunnel (터널 탐지를 위한 전기비저항 토모그래피 응용 실험)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Cho, Seong-Jun;Kobayashi, Takao
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.215-218
    • /
    • 2007
  • Tunnel detection is known to be one of the challenging problems in geophysical society. Among various geophysical methods, we tried to examine the applicability of electrical resistivity tomography (ERT) method to detect empty tunnel. In this study, we analyzed the ERT data acquired at the test site for tunnel detection. The inversion results have shown reasonable image of the tunnel although the resolution is quite poor. Moreover, we could obtain the three-dimensional attitude of tunnel through 3-D ERT imaging. Therefore, we expect that ERT can make contribution to the tunnel detection problem and further research effort such as fusion of geophysical methods will provide more reliable tunnel detection capability.

  • PDF

GIS-based Spatial Zonations for Regional Estimation of Site-specific Seismic Response in Seoul Metropolis (대도시 서울에서의 부지고유 지진 응답의 지역적 예측을 위한 GIS 기반의 공간 구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Recent earthquake events revealed that severe seismic damages were concentrated mostly at sites composed of soil sediments rather than firm rock. This indicates that the site effects inducing the amplification of earthquake ground motion are associated mainly with the spatial distribution and dynamic properties of the soils overlying bedrock. In this study, an integrated GIS-based information system for geotechnical data was constructed to establish a regional counterplan against ground motions at a representative metropolitan area, Seoul, in Korea. To implement the GIS-based geotechnical information system for the Seoul area, existing geotechnical investigation data were collected in and around the study area and additionally a walkover site survey was carried out to acquire surface geo-knowledge data. For practical application of the geotechnical information system used to estimate the site effects at the area of interest, seismic zoning maps of geotechnical earthquake engineering parameters, such as the depth to bedrock and the site period, were created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site and administrative sub-unit in the Seoul area. Based on the case study on seismic zonations for Seoul, it was verified that the GIS-based geotechnical information system was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation particularly at the metropolitan area.