• Title/Summary/Keyword: geosynthetics

Search Result 909, Processing Time 0.026 seconds

Estimation of Dynamic Interface Friction Properties of Geosynthetics (토목섬유의 동적 경계면 마찰특성 평가)

  • 김동진;서민우;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.265-275
    • /
    • 2003
  • In this study, shaking table tests were conducted to estimate dynamic interface properties between geosynthetics such as geomembrane, geotextile and geosynthetic clay liner. Accelerations of both shaking table and upper box, and relative displacements between geosynthetics under dynamic loading were measured. Also, the influence of normal stress, frequency of excitation and dry/wet conditions were investigated through the analyses of test results. from the test results, it was found that there is a limited acceleration below which dynamic farce can be transmitted between geosynthetics without the loss of horizontal acceleration. Dynamic interface friction angle between geosynthetics could be calculated through the limited acceleration. Relative displacements induced along geosynthetic interfaces under dynamic loading were not consistent depending on the type of interface and test conditions. The maximum slip displacements between geosynthetics are normalized and normalized slip equations were developed for each interface. By using the normalized slip equation, maximum slip displacements for the geosynthetic interface could be predicted for the given base acceleration and frequency of excitation.

A Comparative Study on Connection Strength Evaluation Methods of Wall Facing-Geosynthetics using the Design Case (설계사례를 이용한 전면 벽체/보강재의 연결강도 평가방법에 관한 비교 연구)

  • Han, Jung-Geun;Hong, Ki-Kwon;Shin, Ju-Oek;Cho, Sam-Deok;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.21-29
    • /
    • 2009
  • The connection strength between wall facing and geosynthetics should be evaluated by experimental method in the design of reinforced earth wall. However, the evaluation result of connection strength using the typical design method, FHWA(1996) and NCMA(1997), is excessively because of a safety factors. Therefore, this study is conducted in connection strength test between wall facing and geosynthetics, then the test result is applied to the design case by NCMA, FHWA and Soong & Koener(1997). The results confirmed that the evaluation method by Soong & Koener, which is used ultimate connection strength by connection strength test in allowable connection strength, is satisfied with stable in design.

  • PDF

Evaluation of Interface Friction Properties between Coarse Grained Materials and Geosynthetics (조립재료와 지오신세틱스의 접촉면 마찰특성 평가)

  • Chang, Yongchai;Lee, Seungeun;Seo, Jiwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.53-59
    • /
    • 2008
  • The purpose of the study was to evaluate how much gastropod shell effected its properties better than crushed stone as coarse grained materials by comparing friction properties of a contact surface between coarse grained materials and geosynthetics with the large-scale direct shear test. To achieve the purpose, the study compared and analyzed friction coefficient and friction angle by making crushed stone or gastropod shell into model ground and by installing and shearing non-woven fabric or geostrip geosynthetics. As the results of the analysis, crushed stone had the internal friction angle of $33.8^{\circ}$ when its unit weight was $13.7kN/m^3$ and gastropod shell had the internal friction angle of $35.4^{\circ}$ when its unit weight was $5.4kN/m^3$. Also, the friction angle of a contact surface between geosynthetics and crushed stone was larger than the friction angle of a contact surface between geosynthetics and gastropod shell.

  • PDF

Evaluation of Lateral Deformation and Vertical Stress of Geosynthetics Reinforced Walls by the Scale Model Test (축소모형실험을 통한 토목섬유 보강토옹벽의 수평변위 및 수직응력 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;You, Seung-Kyong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.119-127
    • /
    • 2017
  • This paper presents a study of reinforced earth model wall reinforced by geosynthetics subjected to vertical surcharge. 7 types of reinforced earth model wall were constructed in the model box($100cm{\times}140cm{\times}100cm$) to assess the deformation and stress behavior of model walls according to different tensile strength and laying number of reinforcement and surcharge pressures. 3 types of geosynthetics that have different tensile strength were used as reinforcement. The test was carried out by changing the number of reinforcement to 5, 7, 9, and surcharge pressure to 50, 100, 150, 200, 250 kPa. The model test found that the maximum lateral displacements occurred at the 0.7 H (H : Wall height) position from the bottom of the model wall and vertical stress was low in the smaller surcharge pressure and the larger tensile strength of reinforcement.

Permeability Characteristics of Geosynthetics Vertical Barrier Connections for the Prevention of Contaminants Diffusion (오염물질 확산방지를 위한 토목섬유 연직차수벽 연결부의 투수성능 평가)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: In this study, we used hydrophilic waterstop used in geosynthetics vertical barrier system to evaluate the performance of impermeability under sealing conditions. Method: ASTM D5887 and ASTM D6766 were applied to determine the capability of the connection during the geosynthetics vertical barrier system. Hydrophilic waterstop was saturated in each solution and the weight, thickness, and volume changes were analyzed over elapsed time. Hydrophilic waterstop was installed at the geosynthetics vertical barrier system connection to evaluate the permeability characteristics. Results: As the expansion reaction time of hydrophilic waterstop increased relatively under saline conditions, the decrease in permeability also showed a smaller decrease in fresh water. Furthermore, the method of engagement of the geosynthetics vertical barrier system showed somewhat better performance of the impermeability due to the large pressure resistance caused by the roll joint type than interlock type. Conclusion: In urban pollutants, which can estimate the outflow of pollutants such as oil storage facilities and industrial complexes, proactive response technologies that can prevent the contaminant diffusion can significantly reduce the damage.

Long Term Behaviors of Geosynthetics Reinforced Soil Walls (보강토옹벽의 장기거동분석에 관한 연구)

  • Won, Myoung-Soo;Lee, Yong-An;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.33-42
    • /
    • 2006
  • Geosynthetics reinforced soil (GRS) walls with a flexible wall face allow deformation. GRS walls constructed on the weak ground change in both horizontal earth pressures on wall faces and the tensile stress of geosynthetics, affecting the backfill in time until the deformation of the backfill and the foundation is completed. However, there are few studies that were done to measure and analyze the horizontal earth pressures and geosynthetics deformation on GRS walls constructed on the soft ground for a long period of time. Two field GRS walls in this study are constructed on a shallow layer of a weak foundation to measure and analyze geostynthetics deformation, horizontal earth pressures, and pore water pressures for the duration of approximately 16 months. Strain gauges are used to measure geosynthetics deformation; this study specifically suggests a new method of measuring nonwoven geotextile using strain gauges. Most geosynthetics deformation occurred within a month after the construction of GRS walls. The maximum deformation measured for approximately 16 months appeared as follows: nowoven geotextile: 6.05%, woven geotextile: 2.92%, and geogrid: 2.33%. Pore water pressures on the GRS wall can be ignored; however, horizontal earth pressures on the bottom and the upper part of the wall face appear larger than earth pressures at rest.

Installation Damage Reduction Factor for Geosynthetics Reinforcements Based on Various Full-Scale Field Installation Tests (다양한 현장내시공성시험에 근거한 토목섬유 보강재의 시공성 감소계수 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.225-238
    • /
    • 2018
  • In this paper, to investigate the influence of installation damage, a variety of full-scale field installation tests with 15 geosynthetics reinforcements and fill materials of various grain size distribution have been performed. The full-scale field installation test was conducted with reference to the FHWA (2009) guidelines. The tensile strength tests were performed by sampling up to 20 specimens randomly from the excavated geosynthetics reinforcements after compaction of fill material, and the degree of decrease in tensile strength of reinforcements due to compaction was analyzed based on the experiment results. It was found that the degree of tensile strength reduction of geosynthetics reinforcements due to the compaction of fill material is greatly influenced by the type of reinforcement and the maximum diameter of fill material. In addition, it was found that the strength reduction ratio of PET geogrid (PVC coating) with relatively small stiffness was greatest, and that the larger the maximum grain size of the fill material, the greater the strength reduction ratio. And also, a more reasonable evaluation method for the installation damage reduction factor of geosynthetics reinforcements is proposed based on the results of full-scale field installation tests in present study and the existing test results.

A Study on the Confined Effects of Highly Moistured Soils Reinforced with Geosynthetics (토목섬유가 보강된 고함수비 흙의 구속효과에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Kang, Sang-Kyun;Lee, Hyung-Jun;Choi, Moon-Bong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • This study confirms reinforcing effect of geosynthetics in the use of soil at higher water contents as a compaction material on compaction tests, field compaction tests, and numerical analysis. To verify a confined effect, a large mold(area ratio of rammer / mold = 0.19) larger than D compaction mold(area ratio of rammer / mold = 0.33) was performed for compaction. It showed that in the D compaction test, dry density were 0.5~0.6% increases and in the compaction test using the large mold, it were 2.4~3.7% increases at high water contents. It shows that when the area of compacted area is large enough, a confined effect could be arising from the reinforcement of geosynthetics even at high water contents. As a result of analyzing of compaction effects according to 'depth(z/B) from compacted surface' in the field, when not reinforced, the compaction state deteriorated due to the over-compaction and the compaction did not work well. However, when reinforcement of geosynthetics, restraint effect by geosynthetics occurs, it is confirmed that the compaction energy is effectively transferred to the compaction layer and the dry density is increased. Also, through the conceptual model of the behavior of geosynthetic and soil layer, the mechanism in the ground due to reinforcement of geosynthetics is presented and it is verified through finite element analysis.

Geosynthetics: material characteristics of geotextiles &geomembranes

  • Rollin, Andre L.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.1-25
    • /
    • 2003
  • geosynthetles -A manufacturerl synthetic product used with soil, rock or other materials to enhance the performance of geotechnical works geotentiles - A permeable textile product used in contact with a soil for separation, filtration, reinforcement and drainage geemembranes - A synthetic low permeability material used as liner in geotechnical applications. (omitted)

  • PDF