• Title/Summary/Keyword: geosynchronous

Search Result 89, Processing Time 0.026 seconds

정지궤도 통신위성의 추진시스템 개념설계 연구

  • Park, Eung-Sik;Park, Bong-Kyu;Kim, Jeong-Soo
    • Aerospace Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.55-64
    • /
    • 2002
  • A conceptual design of propulsion system for a geosynchronous communication satellite with 12 years design life is presented in this paper. Propellant mass budget for the design life is calculated using total velocity increment (ΔV) flowed-down from mission requirement analysis. Sizes of the fuel and oxidizer tank are derived based on the calculated propellant mass budget, and mass of the pressurant as well as the size and pressure of pressurant tank are calculated too. Thruster positioning, number of rocket engines, and position of tank are determined through Trade-Off Study with Structure & Mechanical Subsystem. Propulsion system configuration and its schematics are presented finally.

  • PDF

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

A Study on the East-West Station Keeping Box of Koreasat 2 (무궁화위성 2호의 동서위치유지 박스 설정에 관한 연구)

  • Lee,Sang-Cheol;Kim,Bang-Yeop;Park,Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.75-81
    • /
    • 2003
  • The longitude and latitude of a geosynchronous satellite are not defined as a point in space because of various external perturbations. To perform the missions of a satellite for a communication and broadcasting, the satellite must be positioned within a predefined station keeping box in given limited space longitude. In this study, we propose east-west station keeping box larger than that of north-south station. By using the derived error equation, we verified the Koreasat station keeping box allocation by assuming one week and two weeks of station keeping cycle.

REVIEW OF BACK-UP POSSIBILITY ON GYRO ANOMALY OF GEOSYNCHRONOUS SATELLITES USING EXTENDED KALMAN FILTER (확장칼만필터를 이용한 정지궤도위성의 자이로 이상상태 대처 가능성 검토)

  • Park, Young-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.2
    • /
    • pp.175-186
    • /
    • 2005
  • In this paper, the development of the extended kalman filter(EKF) which is based on Koreasat-3 bus system is introduced and the design result is shown through the simulation. Especially to determine the filter gains for accurate estimation, there is assumed that initial estimated parameters are not changed. But although the satellite performs the attitude control by 2Hz, it is verified that the EKF is running rightly using the changed filter gains. Also some cases are considered using the simulation : with each bias for 4-axis gyro and with gyro each axis failure. It is verified that the designed filter can be used as the back-up about gyro failure.

A Correlation Study for Substorm Injection Electrons in Relativistic Electron Events

  • Hwang, Jung-A;Kyoung W. Min;Lee, Dae-Young;Lee, Ensang
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.36-36
    • /
    • 2003
  • While it is presumed that substorm injection electrons of a few hundred keV are the seeds for relativistic electrons frequently observed during the recovery phase of storms, correlation between the two events has not been well explored with the observed satellite data. We would like to address this problem in the present paper using the data from the geosynchronous GOES and LANL satellites as well as from the polar orbiting NOAA satellites. Our statistical study shows the two channels of LANL SOPA instrument, 105 150 keV and 150 225 keV, best correlates with the increase of the flux levels of GOES relativistic electrons. Especially, the relativistic electron events are not observed when the flux levels of these two channels are maintained low in the substorm injections, regardless of the level of the ULF activities. The conclusion does not change whether the substorm injections occur . during the storm recovery phase or during the non-storm time. As the ULF waves are observed quite frequently over the entire range of L=4 to L=7, the reason why REEs are seen mostly during the storm time seems to be related to the fact that storm-time substorms produce more seed electrons than the substorms that occur during the non-storm time.

  • PDF

Real-Time Orbit Determination for Future Korean Regional Navigation Satellite System

  • Shin, Kihae;Oh, Hyungjik;Park, Sang-Young;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This paper presents an algorithm for Real-Time Orbit Determination (RTOD) of navigation satellites for the Korean Regional Navigation Satellite System (KRNSS), when the navigation satellites generate ephemeris by themselves in abnormal situations. The KRNSS is an independent Regional Navigation Satellite System (RNSS) that is currently within the basic/preliminary research phase, which is intended to provide a satellite navigation service for South Korea and neighboring countries. Its candidate constellation comprises three geostationary and four elliptical inclined geosynchronous orbit satellites. Relative distance ranging between the KRNSS satellites based on Inter-Satellite Ranging (ISR) is adopted as the observation model. The extended Kalman filter is used for real-time estimation, which includes fine-tuning the covariance, measurement noise, and process noise matrices. Simulation results show that ISR precision of 0.3-0.7 m, ranging capability of 65,000 km, and observation intervals of less than 20 min are required to accomplish RTOD accuracy to within 1 m. Furthermore, close correlation is confirmed between the dilution of precision and RTOD accuracy.

Space Weather and Relativistic Electron Enhancement

  • Lee, J.J.;Parks, G.K.;McCarthy, M.P.;Min, K.W.;Lee, E.S.;Kim, H.J.;Park, J.H.;Hwang, J.A.
    • Bulletin of the Korean Space Science Society
    • /
    • 2006.10a
    • /
    • pp.52-52
    • /
    • 2006
  • Many spacecraft failures and anomalies have been attributed to energetic electrons in the Earth's magnetosphere. While the dynamics of these electrons have been studied extensively for several decades, the fundamental question of how they are accelerated is not fully resolved. Proposed theories have not been successful in explaining fast high energy increase such as REE (Relativistic electron enhancement). In this presentation, we show observations of energetic electron precipitation measured by the Korean satellite, STSAT-1 which simultaneously detect (100ev - 20 keV) and (170 - 360 keV) energy electrons at the 680 km orbit, when the RES event observed at the geosynchronous orbit on October 13, 2004. STSAT-1 observed intense electron precipitation in both energy ranges occurred in the midnight sector clearly demonstrating that electrons having wide energy band are injected from the plasma sheet. To make the balance between loss and injection, the injected electron flux should be also large. In this situation, the injected electrons can be trapped into the magnetosphere and produce REE, though they have low e-folding energies. We propose this plasma sheet injection might be the primary source of relativistic electron (1 MeV) flux increases.

  • PDF

Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

  • Kim, Khan-Hyuk;Kwak, Young-Sil;Lee, Jae-Jin;Hwang, Jung-A
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • On August 31, 2001, ${\sim}$ 1705 - 1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ${\sim}$ (-19, - 2,2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field $(V_{{\perp}x})$ were observed. Auroral brightenings localized in the pre-midnight sector (${\sim}$ 2200 - 2400 MLT) occurred during the interval of the $V_{{\perp}x}$ enhancements. The $V_{{\perp}x}$ bursts started ${\sim}$ 2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that $V_{{\perp}x}$ caused localized auroral brightenings.

A Study of Attitude Determination Techniques for Satellite (위성체의 자세결정기법에 관한 연구)

  • Cho, K.R.;Suh, D.H.
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.100-106
    • /
    • 1998
  • The cone intercept method (CIM) is generally used for attitude determination of a spin-stabilized satellite. The method is popularly used on a transfer orbit, but it is well known that it can also be used for the geosychronous orbit. In this paper, the CIM is applied to the geosynchronous orbit and its performance and limitations will be investigated from the results. The CIM impliments two sensors (Sun and Earth sensors). The Sun sensor finds the angle between the spin-axis and the direction vector to the Sun and the Earth sensor does the angle between the spin-axis and the direction vector to the Earth. By using these two cone angles, the CIM gives the direction of the spin-axis of the satellite.

  • PDF

Development of ETRI satellite simulator-ARTSS

  • Kang, J.Y.;Lee, S.;Hong, K.Y.;Shin, K.K.;Rhee, S.W.;Choi, W.S.;Oh, H.S.;Kim, J.M.;Chung, S.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.49-53
    • /
    • 1994
  • Advanced Real-Time Satellite Simulator(ARTSS) has been developed to support the telemetry, tracking and command operations of the ETRI satellite control system and to provide satellite engineers a more powerful and informative satellite simulations tool on the desktop. To provide extensive simulation functions for a communication satellite system in the pre-operational and operational missions, ARTSS uses a geosynchronous orbit(GEO) satellite model consisting of the attitude and orbit control subsystem, the power subsystem, the thermal subsystem, the telemetry, command and ranging subsystem, and the communications payload subsystem. In this paper, the system features and functions are presented and the satellite subsystem models are explained in detail.

  • PDF