• Title/Summary/Keyword: geostationary satellites

Search Result 150, Processing Time 0.026 seconds

A Research Trend on Space Charge Analysis in Polymer Irradiated by Electron Beam (전자빔 조사에 의한 중합체 내의 공간 전하 분석 연구 동향)

  • Kim, Byung-Woo;Lee, Hyung-Chul;Ahn, Jong-Hyun;Hwang, Jong-Sun;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1990-1991
    • /
    • 2007
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Introduction of Military Nanosatellite Communication System Using Anti-Jamming and Low Probability of Detection (LPD) Waveforms (항재밍/저피탐 웨이브폼이 적용된 군 초소형 위성 통신체계 소개)

  • Ju Hyung Lee;Hae-Won Park;Kil Soo Jeong
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.144-153
    • /
    • 2023
  • The existing military satellite communication system was based on geostationary satellites equipped with special communication payloads against enemy's jamming and signal reception. With the advent of new weapon systems such as unmanned systems, the need for low-orbit satellite-based communication system is increasing. This paper introduces various waveform technologies suitable for cube satellite-based communication system and the operational concept of a future military nanosatellite communication system.

Prediction on the Effect of Multi-Constellation SBAS by the Application of SDCM in Korea and Its Performance Evaluation (SDCM의 국내 적용 및 성능 평가를 통한 다중 위성군 SBAS의 효과 예측)

  • Lim, Cheol-soon;Seok, Hyo-jeong;Hwang, Ho-yon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.417-424
    • /
    • 2016
  • Russia recently began broadcasting the SDCM signal in order to provide SBAS service for the civil aviation in the Russian territory using its own geostationary satellites. The service coverage of the SDCM geostationary satellite, LUCH-5A and LUCH-5B, includes Korea peninsula, where the test signal from the pseudo random number (PRN) 140 is received. This paper shows that the position accuracy at the Chulwon GNSS site is improved to 0.8749 m (horizontal) and 0.9589 mm (vertical) by applying the received SDCM message to the RINEX data. Considering that the SDCM augments both GPS and GLONASS, the performance of multi-constellation SBAS was compared to that of GPS-only SBAS, and APV-I availability was improved by decreasing the protection level about 30 %. From the results, we can expect that the mult-constellation SBAS can contribute to the performance enhancement of the future KASS.

Multipaction Sensitivity Analysis of X-band Output Filter for Geostationary Satellite (정지궤도위성 X-대역 출력필터 멀티팩션 민감도 해석)

  • Kim, Joong-Pyo;Lee, Sun-Ik;Lim, Won-Gyu;Kim, Sang-Goo;Lee, Sang-Kon
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.131-136
    • /
    • 2015
  • In this paper, prior to the flight model X-band dual-mode circular cavity filter required for the high power transmission of the observation payload in the geostationary satellite, the development model are designed and analyzed to show the analytical multipactor requirement margin. First of all, the multipaction breakdown power sensitivities were analyzed by changing the iris width and thickness within the filter, and through that the iris width and thickness was selected and then the multipaction threshold powers over the frequencies within the bandwidth were analyzed and the required margin of 8 dB was obtained. Also for the high power transmission filter, another important phenomena known as corona breakdown are analyzed for the iris width and thickness changes. Finally the development model manufactured was tested and the results met the key requirements.

Optimization of GEO-KOMPSAT-2 Apogee Engine Burn Plan (정지궤도복합위성 원지점엔진 분사계획 최적화 연구)

  • Park, Bongkyu;Choi, Jaedong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.90-97
    • /
    • 2016
  • GEO-KOMPSAT-2A and GEO-KOMPSAT-2B are under development by KARI to replace the COMS mission, and will be launched in 2018 and 2019, respectively. GEO-KOMPSAT-2 will be launched and injected into the GTO (Geostationary Transfer Orbit) by the Ariane V launcher. Once injected into the GTO, the satellites are transferred to the drift orbit by applying a series of apogee engine burns. The burn epoch time, duration, and intervals are selected such that the satellite is placed closest to the target drift longitude, or at the drift start longitude. For GEO-KOMPSAT-2, four or five LAE (Liquid Apogee Engine) burns will be applied for drift orbit injection. This paper establishes the GEO-KOMPSAT-2 LAE burn plan, considering predefined constraints and adjustments, taking into account the perturbing forces. Two approaches have been analyzed: the first is a single shot approach, whereas the other is an iteration based optimal solution. Optimal solution has been obtained using the Focusleop, a geostationary satellite LEOP tool.

FOG DETECTION OVER THE KOREAN PENINSULA DERIVED FROM SATELLITE OBSERVATIONS OF POLAR-ORBIT (MODIS) AND GEOSTATIONARY (GOES-9)

  • Yoo, Jung-Moon;Jeong, Myeong-Jae;Yoo, Hye-Lim;Rhee, Ju-Eun;Hur, Young-Min;Ahn, Myoung-Hwan
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.664-667
    • /
    • 2006
  • Seasonal threshold values for fog detection over the ten airport areas in the Korean Peninsula have been derived, using the satellite-observed data of polar-orbit (Aqua/Terra MODIS) and geostationary (GOES-9) during two years. The values are obtained from reflectance at 0.65 ${\mu}m$ $(R_{0.65})$ and the difference in brightness temperature between 3.7 ${\mu}m$ and 11 ${\mu}m$ $(T_{3.7-11})$. In order to examine the discrepancy between the threshold values of two kinds of satellites, the following parameters have been analyzed under the condition of daytime/nighttime and fog/clear-sky, utilizing their simultaneous observations over the Seoul Metropolitan Area. The parameters are the brightness temperature at 3.7 ${\mu}m$ $(T_{3.7})$, the temperature at 11 ${\mu}m$ $(T_{11})$, and $T_{3.7-11}$ for day and night. The $R_{0.65}$ data are additionally included in the daytime. The GOES-9 thresholds over the nine airport areas except the Cheongju airport have revealed the accuracy of 60% in the daytime and 70% in the nighttime, based on statistical verification as follows; FAR, POD and CSI. However, the accuracy decreases in the foggy cases with twilight, precipitation, short persistence, or the higher cloud above fog.

  • PDF

Transmitter Design for Earth Station Terminal Operating with Military Geostationary Satellites on Ka-band (Ka 대역 군위성통신 지상단말 송신기 설계)

  • Kim, Chun-Won;Park, Byung-Jun;Yoon, Won-Sang;Lee, Seong-Jae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.393-400
    • /
    • 2014
  • In this paper, we have designed the transmitter for earth station terminal operating with military geostationary satellite on Ka-band that is complied with MIL-STD-188-164A. The designed antenna of this terminal is dual-offset gregorian reflector which is consist of corrugated horn and iris polarizer, othermode transducer. This antenna meets radiation pattern and transmit EIRP spectral density requirements in this standard. The designed RF systems of this terminal are consist of Block Up Converter(BUC) converting frequency band from IF to Ka band and SSPA having low-power consumption and compact light-weight using the pHEMT MMIC compound devices. This RF systems applied with VSWR, spurious/harmonic suppression, output flatness and phase noise requirement in this standard.

The Receiving System Design and Fabrication of Mobile Antenna for Satellite Internet Service (위성을 이용한 인터넷 통신용 이동 안테나의 수신시스템 설계 및 제작)

  • Park Ung Hee;Son Seong Ho;Noh Haeng Sook;Lee Kyoung Hee;Jeon Soon Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.85-91
    • /
    • 2004
  • The land mobile antenna for two-way communication using geostationary satellite consists of a transmitting and receiving systems. The transmitting system plays the role of sending the signal to the satellite while the receiving system does the role of receiving signal from the satellite and tacking the target satellite. Especially, the land mobile antenna for satellite communication must be met with the international regulation such as antenna pattern, transmitting power and tracking error to protect the damage of the neighbor satellites. On the other hand, this paper thoroughly examined a receiving system to satisfy a stable satellite tracking performance and antenna pattern specified by the international regulation for Ku-band geostationary satellite.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Competing for the Responsibility of the Operational Meteorological Satellite Program: After the Launch of TIROS in 1960 (현업용 기상위성에 대한 주도권 다툼: 1960년 TIROS 발사 이후)

  • Ahn, Myoung-Hwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.265-281
    • /
    • 2014
  • Currently, Korea is developing a Cheollian follow-on satellite program, named as Geostationary Korea Multipurpose Satellite 2 (GK-2), which consists of two satellites. One satellite (GK-2A) is dedicated to the meterological mission, while the second one (GK-2B) hosts two main payloads for the ocean and environmental application. As GK-2A is dedicated to the meteorological mission unlike Cheollian, there have been discussions on the possibility of transferring the responsibilities of the GK-2A program to the Korea Meteorological Administration. To help resolve any consumptive disputes or to find an efficient way for the GK-2A program, the events happened after the successful launch of the first meteorological satellite TIROS-1 in the U.S. in April 1960 are investigated. With the successful demonstration of usefulness of TIROS-1 for the meteorological applications, organizations such as the Weather Bureau and the Department of Defense, responsible for the real time application of the TIROS 1 data, strongly requested for an operational meteorological satellite program which resulted in the plan for the National Operational Meteorological Satellite System (NOMSS). The plan was strongly supported by Kennedy Adminstration and was put forwarded for the new program under the responsibility of Weather Bureau to the Congress. However, the responsible Committee on Science and Aeronautics sided with NASA and requested major revision of the responsibility. Due to many unfavorable conditions, Weather Bureau accepted the requests and signed with NASA on the agreement for the operational meteorological satellite. However, with the delay of Nimbus satellite which is planned to be used for the prototype of the operational satellite and changes of the unfavorable situations, the Weather Bureau could draw a second agreement with NASA. The new agreement reflected most propositions requested by the Weather Bureau for the NOMSS plan. Until now the second agreement is regarded as the basic principles for the operational meteorological satellite program in the U.S. This study investigates the backgrounds and processes of the second agreement and its implications for the GK-2 program.