• Title/Summary/Keyword: geoscience and mineral resources technology

Search Result 457, Processing Time 0.027 seconds

Desirable Suggestions for Korean Geo-technology R&D through Analysis of the Global Grand Challenges and Moonshot Projects (글로벌 과학난제 도전연구프로젝트 분석을 통한 우리나라 지질자원기술에의 바람직한 제언)

  • Kim, Seong-Yong;Sung, Changmo
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.111-120
    • /
    • 2020
  • Remarkable scientific and technological achievements are mainly shown in the 'super-convergence' or 'convergence of convergence' among cross- disciplinary fields, and advanced countries are promoting the 'high-risk, high-return research' ecosystem. Google LLC is carrying out numerous new challenges in terms of a non-failure perspective. Innovative research by the US Defense Advanced Research Projects Agency (DARPA) has produced such breakthroughs as the Internet, GPS, semiconductors, the computer mouse, autonomous vehicles, and drones. China is pioneering a 'Moon Village' and planning the world's largest nuclear fusion energy and ultra-large particle accelerator project. Japan has also launched 'the moonshot technology development research system' to promote disruptive innovation. In Korea, the government is preparing a new research program to tackle the global scientific challenges. Therefore, it is necessary to determine the reasonable geoscientific challenges to be addressed and to conduct a preliminary study on these topics. For this purpose, it is necessary to conduct long-term creative research projects centered on young researchers, select outstanding principal investigators, extract innovative topics without prior research or reference, simplify research proposal procedures, innovate the selection solely based on key ideas, and evaluate results by collective intelligence in the form of conferences.

Heavy Metal(loid) Levels in Paddy Soils and Brown Rice in Korea

  • Kunhikrishnan, Anitha;Go, Woo-Ri;Park, Jin-Hee;Kim, Kwon-Rae;Kim, Hyuck-Soo;Kim, Kye-Hoon;Kim, Won-Il;Cho, Nam-Jun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.515-521
    • /
    • 2015
  • There is an increasing concern over heavy metal(loid) contamination of soil in agricultural areas including paddy soils. This study was conducted to monitor the background levels of heavy metal(loid)s, arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) in major rice growing soils and its accumulation in brown rice in Korea. The samples were collected from 82 sites nationwide in the year 2012. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in paddy soils were 4.41 (0.16-18.9), 0.25 (0.04-0.82), 13.24 (3.46-27.8), 0.047 (0.01-0.20), 13.60 (3.78-35.0), 21.31 (8.47-36.7), and 54.10 $(19.19-103.0)mg\;kg^{-1}$, respectively. This result indicated that the heavy metal(loid) levels in all sampled paddy soils are within the permissible limits of the Korean Soil Environment Conservation Act. The mean and range values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.146 (0.04-0.38), 0.024 (0.003-0.141), 4.27 (1.26-16.98), 0.0024 (0.001-0.008), 0.345 (0.04-2.77), 0.113 (0.04-0.197), and 22.64 $(14.1-35.1)mg\;kg^{-1}$, respectively. The mean and range BCF (bioconcentration factor) values of As, Cd, Cu, Hg, Ni, Pb, and Zn in brown rice were 0.101 (0.01-0.91), 0.121 (0.01-0.70), 0.399 (0.05-2.60), 0.061 (0.016-0.180), 0.033 (0.004-0.44), 0.005 (0.003-0.013), and 0.473 (0.19-1.07), respectively, with Zn showing the highest. The results show that the levels of all metal(loid)s in all sampled brown rice are generally within the acceptable limit for human consumption.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

A study on the relationship between concentration of phosphorus, turbidity, and pH in water and soil (물과 토양에서 인의 농도, 탁도 그리고 pH와의 관계에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.304-309
    • /
    • 2011
  • In this research, behaviour of turbidity and phosphorus in water and soil dependent upon pH and a change of water was studied. Phosphorus dissolve rate from turbidity was increased for water if potential of hydrogen was less than pH 4 or more than pH 7. Turbidity release rate from soil was increased with pH. Turbidity release rate from soil was drastically increased for water if potential of hydrogen was more than pH 4. turbidity release rate from soil was stabilized more than pH 6. Dissolved phosphorus was increased from 2 hours to 24 hours and stabilized in 24 hours. Turbidity was reached the peak of 24 hours and decreased from 24 hours to 96 hours. Turbidity and dissolved phosphorus was decreased for water if these samples were changed a overlying water. Behaviour of turbidity was analogous to dissolved phosphorus when potential of hydrogen was increased from pH 6 to pH 10 and a change of overlying water was increased from 1 time to 4 times. These results suggest that phosphorus dissolve rate and turbidity were directiy correlated with pH. These results are of great importance in lakes because most lakes have a pH in the range of pH 7-10.

A study on relationship of concentration of phosphorus, turbidity and pH with temperature in water and soil (물과 토양에서 pH, PO4-P, 탁도 그리고 T-P 농도에 미치는 온도의 영향에 관한 연구)

  • Min, Young-Hong;Hyun, Dae-Yoeung;Eum, Chul-Hun;Chung, Nam-Hyun;Kang, Sam-Woo;Lee, Seung-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.378-386
    • /
    • 2011
  • The goal of this study is to understand the influence of temperature on phosphorus release rate from soil into water. As the temperature increases, $PO_4$-P reaches equilibrium more quickly and the equilibrium concentration increases, and thus the $PO_4$-P concentration increases, and pH decreases. The $PO_4$-P concentration affects pH. $PO_4$-P released from turbidity is not adsorbed onto the turbidity. $PO_4$-P was independent on the turbidity and yet $PO_4$-P was steadily increasing. However, $PO_4$-P was dependent upon the turbidity concentration as the turbidity releases $PO_4$-P. The total phosphorous (T-P) and turbidity were directly linked because T-P changed with the turbidity. T-P includes the $PO_4$-P content of water and the phosphorus content of the turbidity. As the temperature decreases, density of water increases, and the precipitation of turbidity decreases, resulting in an increases in T-P concentration. As the temperature increases, the T-P concentration decreases, but the PO4-P release rate from turbidity increases. At the same time, even at different temperatures, the T-P concentrations of the samples were about the same. When the lake gets deepened, the water temperature decreases, hence, the phosphorus release rate from soil into water was decreased. This mechanism is of great interest because phosphorus is released from soil sediment into the lake water.

Experimental Study on the Inhibition Effect of PVCap to Prevent Formation of Hydrate in Subsea Flowline (해저 유동관내 하이드레이트 형성 방지를 위한 PVCap의 억제효과에 관한 실험 연구)

  • Kim, Young-Min;Choi, Jun-Ho;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.56-64
    • /
    • 2020
  • This study presents the hydrate induction time of PVCap according to subcooling temperature, salt concentration, and MEG concentration in order to analyze the inhibition effect of PVCap in various production environments of offshore gas fields. A high-pressure hydrate generator was made for the hydrate formation experiments. It was verified that the apparatus had sufficient reliability by comparing the results of hydrate equilibrium conditions and induction time from the apparatus with published reference data. As the subcooling temperature increased from 6.1℃ to 12.1℃, the induction time of PVCap concentration of 0.1~1 wt% decreased. When the salt concentration increased from 3 wt% to 7 wt%, the induction time was reduced by up to 78% under the condition of 0.5 wt% PVCap due to polymer structure degradation by salt effect. In the case of HHI (hybrid hydrate inhibitor) made by mixing MEG 10 wt% and PVCap, the change in induction time was not large compared to PVCap 1 wt% due to the under-inhibition effect. On the other hand, the hydrate inhibition efficiency of HHI with MEG 20wt% increased 1.7 times compared to PVCap.

A Study on the Flow Assurance in Subsea Pipeline Considering System Availability of Topside in LNG-FPSO (LNG-FPSO에서 상부구조물의 시스템 가용도를 고려한 해저 배관의 유동안정성 연구)

  • Kim, Young-Min;Choi, Jun-Ho;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.18-27
    • /
    • 2020
  • This study presents flow assurance analysis in subsea pipeline considering system availability of topside in LNG-FPSO. A hydrate management strategy was established, which consisted of PVCap experiments, system availability analysis of LNG-FPSO topside, hydrate risk analysis in the pipeline, and calculation of PVCap injection concentration. The experimental data required for the determination of PVCap injection concentration were obtained by measuring the hydrate induction time of PVCap at the subcooling temperatures of 6.1, 9.2, and 12.1℃. The availability of LNG-FPSO topside system for 20 years was 89.3%, and the longest downtime of 50 hours occurred 2.9 times per year. The subsea pipeline model for multiphase flow simulation was created using field geometry data. As a result of risk analysis of hydrate plugging using subsea pipeline model, hydrate was formed at the end of flowline in 23.2 hours under the condition of 50 hours shutdown. The injection concentration of PVCap was determined based on the PVCap experiment results. The hydrate plugging in subsea pipeline of LNG-FPSO can be completely prevented by injecting PVCap 0.25 wt% 2.9 times per year.

Analysis of CaCO3 structure of marine bivalves using X-ray diffraction (해산 이매패류 패각의 CaCO3 결정 구조에 대한 X-ray 회절 분석)

  • Nam, Ki-Woong;Lee, Seng-Woo;Song, Jae-Hee;Jeung, Hee-Do;Park, Kyung-Il
    • The Korean Journal of Malacology
    • /
    • v.31 no.4
    • /
    • pp.279-283
    • /
    • 2015
  • This study investigated spectroscopic characteristics of shell crystals of eight marine bivalve species using X-ray diffraction (XRD) analysis; moreover, the Family level relatedness of shellfish was investigated. In XRD analysis, the shells of Ruditapes philippinarum, Meretrix lusoria, Anadara granosa, and Fulvia mutica were found to have orthorhombic aragonite $CaCO_3$ crystals, while shells of Patinopecten yessoensis and Crassostrea gigas had trigonal-rhombohedral calcite crystals. The shells of Mytilus coruscus and Atrina pectinata were determined to have a mixture of aragonite and calcite crystals. XRD information revealed the Family level-specific characteristics of shellfish; the results agreed with the current taxonomic system. In conclusion, spectroscopic characteristics of shell crystals indicated Family-level characteristics of shellfish and suggested a more intense species-level investigation; this technology may be useful in identifying shellfish species using small quantities of shells.

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.