• Title/Summary/Keyword: geophysical parameters

검색결과 160건 처리시간 0.029초

GEOPHYSICAL CHARACTERIZATION OF MARINE CLAYS - FROM GEOTECHNICAL PARAMETER ESTIMATION TO PROCESS MONITORING -

  • Choi, Gye-Chun;Chang, Il-Han;Oh, Tae-Min;Kim, Hak-Sung
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.37-46
    • /
    • 2010
  • Marine clays are soft soil deposits having complicated mineralogy and formation characteristics. Thus, characterization of its geotechnical behavior has been a main issue for geotechnical engineers. Nowadays, the importance and applications of geophysical exploration on marine clays are increasing significantly according to the accuracy, efficiency, and reliability of geophysical survey technology. For marine clays, seismic survey is effective for density and elasticity characterization, while electro-magnetic wave provides the information about the fluid conductivity phenomena inside soil. For practical applications, elastic wave technology can evaluate the consolidation state of natural marine clay layers and estimate important geotechnical engineering parameters of artificially reclaimed marine deposits. Electrical resistivity can provide geophysical characteristics such as particle cementation, pore geometry shape, and pore material phase condition. Furthermore, nondestructive geophysical monitoring is applicable for risk management and efficiency enhancement during natural methane gas extraction from gas hydrate-bearing sediments.

  • PDF

지구물리자료의 역산해석에 관한 개관 (Review on the inversion Analysis of Geophysical Data)

  • 김희준;정승환
    • 지구물리와물리탐사
    • /
    • 제2권2호
    • /
    • pp.112-121
    • /
    • 1999
  • This article reviews the development of geophysical inverse theory. In a series of articles published in 1967, 1968, and 1979, G. Backus and F. Gilbert a trade-off between model resolution and estimation errors in geophysical inverse problems, and gave a criterion to compromise the reciprocal relation. Although the criterion was not clear in the physical point of view, it had been extensively used in the interpretation of geophysical date in the 1970s. This was the starting point of the fruitful development of inverse theory in geophysics. A reasonable criterion to compromise the reciprocal relation was derived to solve linear problems by D. D. jackson in 1979, introducing the concept of a priori information about unknown model parameters. This Jackson's approach was extended to solve nonlinear problems on the basis o probabilistic approach to the inverse problems formulated by A. Tarantola and B. Vallete in 1982. At the end of 1980s ABIC (Akaike Bayesian Information Criterion) was introduced for selecting a more reasonable model in geophysics. Now the date inversion is regarded as the process of extracting new information from observed data, combining in with a priori information about model parameters, and constructing a more clear image of model.

  • PDF

물리탐사자료 복합역산을 위한 예비연구 (Preliminary Study on Joint Inversion of Geophysical Data)

  • 김정호
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2007년도 공동학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2007
  • Recently, multidimensional joint inversion of geophysical data based on fundamentally different physical properties has been actively studied. Joint inversion can provide a way to much more accurately image the subsurface structure. Through the joint inversion, furthermore, it is possible to directly estimate non-geophysical material properties from geophysical measurements. In this study, I derive the objective functions and normal equations of three different joint inversion approaches: one approach based on the structural similarity using cross-gradient, and the other two using the a priori information on the model parameters and the correlation between material properties. Since all the equations derived in this study are based on the same inversion method (smoothness constrained least-squares), it is possible to mix the joint inversion methods so as to produce a new joint inversion algorithm.

  • PDF

Assessment of seawater intrusion using geophysical well logging and electrical soundings in a coastal aquifer, Youngkwang-gun, Korea

  • Hwang Seho;Shin Jehyun;Park Inhwa;Lee Sangkyu
    • 지구물리와물리탐사
    • /
    • 제7권1호
    • /
    • pp.99-104
    • /
    • 2004
  • A combination of drilling, geophysical well logging, and electrical soundings was performed to evaluate seawater intrusion in Baeksu-eup, Youngkwang-gun, Korea. The survey area extends for over 24 $km^2$. To delineate the extent of seawater intrusion, 60 vertical electrical soundings (VES) have been carried out. Twelve wells were also drilled for the collection of hydrogeological, geochemical, and geophysical well logging data, to delineate the degree and vertical extent of seawater intrusion. To map the spatial distribution of seawater in this coastal aquifer, geophysical data and hydrogeochemical results were used, and the relation between the resistivity of groundwater and equivalent NaCl concentration was found. Layer parameters derived from VES data, various in-situ physical properties from geophysical well logging, and the estimated equivalent NaCl concentration were very useful for quantitative evaluation of seawater intrusion. Our approach for evaluating seawater intrusion can be considered a valuable attempt at enhancing the use of geophysical data.

An integrated studies for salt-water intrusion in Yeonggwang-gun, Korea

  • Hwang Seho;Chi Sejung;Lee Won-suk;Shin Jehyun;Park Inhwa;Huh Dae-Gee;Lee Sang-kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.455-458
    • /
    • 2003
  • A combination of drilling, hydrogeochemical survey, geophysical survey and the numerical modelling for the flow and transport of groundwater was performed to evaluate the seawater intrusion in Baeksu-eup, Yeonggwang-gun, Korea. The survey area extends to over 24 $km^2$. Twelve wells were also drilled for the collection of geologic, geochemical, hydrologic, and geophysical logging data to delineate the degree and vertical extent of seawater intrusion. To evaluate and map the salinity in a coastal aquifer, geophysical data and hydrogeochemical results were used. Layer parameters derived from VES data, various in situ physical properties from geophysical well loggings, and the estimated equivalent NaCl concentration were used as the useful input parameters for the numerical simulation with density-dependent flow. Our multidisciplinary approach for evaluating the seawater intrusion can be considered as a valuable attempt to enhancing the utilization of various data and the reliability of numerical ground modelling.

  • PDF

Development of Processing System of the Direct-broadcast Data from the Atmospheric Infrared Sounder (AIRS) on Aqua Satellite

  • Lee Jeongsoon;Kim Moongyu;Lee Chol;Yang Minsil;Park Jeonghyun;Park Jongseo
    • 대한원격탐사학회지
    • /
    • 제21권5호
    • /
    • pp.371-382
    • /
    • 2005
  • We present a processing system for the Atmospheric Infrared Sounder (AIRS) sounding suite onboard Aqua satellite. With its unprecedented 2378 channels in IR bands, AIRS aims at achieving the sounding accuracy of radiosonde (1 K in 1-km layer for temperature and $10\%$ in 2-km layer for humidity). The core of the processor is the International MODIS/AIRS Processing Package (IMAPP) that performs the geometric and radiometric correction for generation of Level 1 brightness temperature and Level 2 geophysical parameters retrieval. The processor can produce automatically from received raw data to Level 2 geophysical parameters. As we process the direct-broadcast data almost for the first time among the AIRS direct-broadcast community, a special attention is paid to understand and verify the Level 2 products. This processor includes sub-systems, that is, the near real time validation system which made the comparison results with in-situ measurement data, and standard digital information system which carry out the data format conversion into GRIdded Binary II (GRIB II) standard format to promote active data communication between meteorological societies. This processing system is planned to encourage the application of geophysical parameters observed by AIRS to research the aqua cycle in the Korean peninsula.

A STUDY ON THE CORRELATION BETWEEN GROUND SUBSIDENCE AREA NEAR ABANDONED UNDERGROUND COAL MINE AND GEOPHYSICAL PROSPECTING DATA USING GIS

  • Kim Ki-Dong;Choi Jong-Kuk;Won Joong-Sun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.325-328
    • /
    • 2005
  • To estimate presumptive local ground subsidence area near Abandoned Under ground Coal Mine(AUCM) at Samcheok city in Korea, the geological properties of existing ground subsidence area and the geophysical prospecting data were analyzed using GIS. The electrical resistivity survey and seismic reflection survey database were constructed from investigation reports and factors which are related with ground subsidence such as geological map, topological map, land use map, lineament map, groundwater level, RMR (Rock Mass Rating), mining tunnel map and slope database were constructed also to make a comparative study of each parameters. As a result of the spatial analysis of existing ground subsidence area, 9 major factors causing ground subsidence were extracted and a connection between the structure of underground and the ground subsidence was determined from the analysis of geophysical prospecting data. The estimation of presumptive ground subsidence area was performed using the correlation between the result from neural network analysis of 9 factors and the scrutiny of geophysical prospecting data.

  • PDF

물리탐사에 기초한 대수층 특성화 및 적용 사례 분석 (Aquifer Characterization Based on Geophysical Methods and Application Analysis on Past Cases)

  • 정주연;김빛나래;송서영;정인석;송성호;남명진
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권2호
    • /
    • pp.1-23
    • /
    • 2022
  • For its essential importance as a resource, sustainable development of groundwater has been major research interests for many decades. Conventional characterization of aquifer and groundwater has relied on borehole data from observation well. Although borehole data provide useful information on yield and flow of groundwater, it is often difficult and sometimes costly to estimate the spatial distribution of groundwater in entire aquifer. Geophysical probing is an alternative techique that provides such information due to its capability to image subsurface structures as well as to delineate spatial distribution of hydraulic parameters. This study presents various technical information about geophysical probing to estimate main characteristics of aquifer for groundwater exploitation. Subsequently, we analyzed representative cases, in which geophysical methods were applied to identify the location of the groundwater, classify freshwater and brine, derive hydraulic constants, and monitor groundwater.

물리탐사 자료를 이용한 강둑 토양 종단면도 작성 (An attempt at soil profiling on a river embankment using geophysical data)

  • Takahashi, Toru;Yamamoto, Tsuyoshi
    • 지구물리와물리탐사
    • /
    • 제13권1호
    • /
    • pp.102-108
    • /
    • 2010
  • 강둑의 안정성을 평가하기 위해서 강둑의 내부구조를 알아야 한다. 만약 물리탐사 방법이 콘관입시험(cone penetration test; CPT)과 시추(drilling)와 같은 지반공학기법과 함께 이용된다면 강둑의 안정성 평가를 위해 가장 효과적인 방법이 될 수 있다. 맥상체나 하층토는 일반적으로 다양한 범위의 압도를 갖는 물질들로 구성되어 있으므로 강둑에서 물의 침투 및 기계적 안정성을 예측하기 위해서는 토양의 특성 및 층상구조를 정확히 평가해야만 한다. 이 연구에서는 매우 긴 강둑에 대하여 이러한 변수들을 매우 효과적으로 알아내기 위하여 물리탐사 자료를 이용한다. 물리탐사 방법으로 측정된 제방 토양의 S파 속도와 전기비저항을 이용하여 토양을 분류한다. 이러한 분류는 미고결 사질토 모델(unconsolidated sand model)이라 불리는 물리적 토양 모델에 기초한다. 이러한 모델을 이용하여 S파 속도와 전기비저항 종단면도로부터 강둑을 따라 토양 종단면도가 만들어진다. 이러한 토양 종단면도는 강둑 조사에 대해 그 유용성이 이미 검증된 지반공학 검층자료(geotechnical logs)에 의해 검증되어 왔다.

Geostatistics for Bayesian interpretation of geophysical data

  • Oh Seokhoon;Lee Duk Kee;Yang Junmo;Youn Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.340-343
    • /
    • 2003
  • This study presents a practical procedure for the Bayesian inversion of geophysical data by Markov chain Monte Carlo (MCMC) sampling and geostatistics. We have applied geostatistical techniques for the acquisition of prior model information, and then the MCMC method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter. This approach provides an effective way to treat Bayesian inversion of geophysical data and reduce the non-uniqueness by incorporating various prior information.

  • PDF