• Title/Summary/Keyword: geophysical data

Search Result 964, Processing Time 0.023 seconds

Electrical surveys at the Okmyung waste landfill of Pohang (포항 옥명 폐기물 매립장에서의 전기탐사)

  • Lee, Gi Hwa;Yun, Jong Ryeol
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • Schlumberger soundings, dipole-dipole survey and electrical conductivity mappings were carried out inside and in front of the entrance of the Okmyung waste landfill in August, 1997 and January, 1998. Inside and in front of the landfill, 11 and 4 electrical soundings and 1 dipole-dipole survey were carried out, respectively. Electrical conductivities were measured at 164 points along the 4 lines in front of the entrance of the landfill. Interpretations of survey data show that low resistivity zones of 0.3∼3 Ωm extend down to 65 m depth from the surface in the 6th landfill, which indicates subsurface contamination by leachate and leachate level at 3∼6 m depth from the surface. In the 9th landfill, low resistivity zones below 2 Ωm appear at 11∼15 m depth from the surface, which indicates a very slim chance of subsurface contamination. On the other hand, electrical surveys and electrical conductivity mappings reveal low resistivities at shallow depths in front of the entrance of the landfill, indicating a high possibility of contamination of weathered zone in this area. It appears that southern part of this area close to the 6th landfill is more contaminated by leachate.

  • PDF

Discrimination between Earthquakes and Explosions Recorded by the KSRS Seismic Array in Wonju, Korea (원주 KSRS 지진 관측망에 기록된 지진과 폭발 식별 연구)

  • Jeong, Seong Ju;Che, Il-Young;Kang, Tae-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.137-146
    • /
    • 2014
  • This study presents a procedure for discrimination of artificial events from earthquakes occurred in and around the Korean Peninsula using data set in the Wonju KSRS seismograph network, Korea. Two training sets representing natural and artificial earthquakes were constructed with 150 and 56 events, respectively, with high signal to noise ratio. A frequency band, Pg(4-6 Hz)/Lg(5-7 Hz), which is optimal for the discrimination of seismic sources was derived from the two-dimensional grid of Pg/Lg spectral amplitude ratio. The corrections for the effects of earthquake magnitude and hypocentral distance were carried out for improvement of discrimination capability. For correcting the effect of magnitude dependence due to the inverse proportionality of corner frequency to seismic moment, the Brune's source spectrum was subtracted from the observation spectrum. The spectrum was corrected using the optimal damping coefficient to remove damping effect with the hypocentral distance. The effect of locally varying spectrum ratio was cancelled correcting variation of wave propagation along the ray path. The performance in discrimination between training sets of natural and artificial events was compared using the Mahalanobis distance in each step of correction. The procedure of magnitude, distance, and path corrections show clear improvements of the discrimination results with increasing Mahalanobis distance, from 1.98 to 3.01, between two training sets.

3D SV-wave Velocity Structure of East Asia using Rayleigh-Wave Tomography (레일리파 토모그래피를 사용한 동아시아의 3차원 SV파 속도구조)

  • You, Seol-Han;Chang, Sung-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.12-17
    • /
    • 2017
  • We construct 3D SV-wave velocity structure of the crust and the upper mantle beneath East Asia from Rayleighwave group-velocity measurements. For the construction of the SV-wave velocity model at 10 ~ 100 km depth, we used seismic data recorded at 321 broadband stations in Korea, Japan, and China. Rayleigh-wave group-velocity dispersion curves were obtained by using the multiple filtering technique in the period range from 3 to 150 s. High SV-velocity anomalies are imaged beneath the East Sea from 10 km depth to deeper depth, implying that the Moho beneath the East Sea is between at 10 ~ 20 km depth. We estimated the Moho beneath the Korean peninsula to be around 35 km based on the depth where a high-velocity anomaly is observed. The SV-wave velocity model shows prominent fast S-velocity anomalies near northeastern Japan, associated with the subducting Pacific plate. Low-velocity anomalies are found beneath the east coast of the Korean peninsula at 100 km depth, which may play a role in the formation of the Ulleungdo and the Ulleung basin. We observed low-velocity anomalies beneath the Yamato basin at 100 km depth as well, which may indicate the upwelling of fluid from the Pacific plate via dehydration at deeper depth.

Case Study of the Shallow Seismic Refraction Survey using Wave Glider (웨이브글라이더를 이용한 천해저 탄성파 굴절법 탐사 사례)

  • Kim, Young-Jun;Cheong, Snons;Koo, Nam-Hyung;Chun, Jong-Hwa;Kim, Jeong-Ki;Hwang, Kyu-Duk;Lee, Ho-Young;Heo, Sin;Moon, Ki-Don;Jeong, Cheol-Hun;Hong, Sung-Du
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • The applicability of refraction survey has been tested using a wave glider widely used in long-term ocean observations around the world. To record seismic refractions, a single channel streamer with metal weight and a seismic recording system were mounted on the wave glider. We used GPS precise time synchronization signal and radio frequency (RF) communication to synchronize shot and recorder triggers and to control acquired data quality in real time. When the wave glider is positioned close to the set point, a 2,000 J sparker is exploded along the designed track at 2 second intervals. Through the test survey, we were able to successfully acquire refractions from the subsurface.

Crustal Structure of the Continental Margin of Korea in the East Sea: Results From Deep Seismic Sounding (한반도의 동해 대륙주변부의 지각구조 : 심부 탄성파탐사결과)

  • Kim Han-Joon;Cho Hyun-Moo;Jou Hyeong-Tae;Hong Jong-Kuk;Yoo Hai-Soo;Baag Chang-Eop
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.1
    • /
    • pp.40-52
    • /
    • 2003
  • Despite the various opening models of the southwestern part of the East Sea (Japan Sea) between the Korean Peninsula and the Japan Arc, the continental margin of the Korean Peninsula remains unknown in crustal structure. As a result, continental rifting and subsequent seafloor spreading processes to explain the opening of the East Sea have not been adequately addressed. We investigated crustal and sedimentary velocity structures across the Korean margin into the adjacent Ulleung Basin from multichannel seismic reflection and ocean bottom seismometer data. The Ulleung Basin shows crustal velocity structure typical of oceanic although its crustal thickness of about 10 km is greater than normal. The continental margin documents rapid transition from continental to oceanic crust, exhibiting a remarkable decrease in crustal thickness accompanied by shallowing of Moho over a distance of about 50 km. The crustal model of the margin is characterized by a high-velocity (up to 7.4 km/s) lower crustal (HVLC) layer that is thicker than 10 km under the slope base and pinches out seawards. The HVLC layer is interpreted as magmatic underplating emplaced during continental rifting In response to high upper mantle temperature. The acoustic basement of the slope base shows an igneous stratigraphy developed by massive volcanic eruption. These features suggest that the evolution of the Korean margin can be explained by the processes occurring at volcanic rifted margins. Global earthquake tomography supports our interpretation by defining the abnormally hot upper mantle across the Korean margin and in the Ulleung Basin.

3D Shape Embodiment of Dam using the 3D Laser Scanning System (3차원 레이저 스케닝 시스템을 이용한 댐체의 3차원 형상구현)

  • Shon, Ho-Woong;Yun, Bu-yeol;Park, Dong-il;Pyo, Ki-Won
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.377-386
    • /
    • 2006
  • There is an inseparable relation between human race and engineering work. As world developed into highly industrialized society, a diversity of large structures is being built up correspondently to limited topographical circumstance. Though large structures are national establishments which provide us with convenience of life, there are some disastrous possibilities which were never predicted such as ground subsidence and degradation. It is very difficult to analyze the volume of total metamorphosis with the relative displacement measurement system which is now used and it is impossible to know whether there is structural metamorphosis within a permissible range of design or not. In this research with an object of 13-year-old earthen dam, through generating point-cloud which has 3D spatial coordinates(x, y, z) of this dam by means of 3D Laser Scanning, we can get real configuration data of slanting surface of this dam with this method of getting a number of 3D spatial coordinates(x, y, z). It gives 3D spatial model to us and we can get various information of this dam such as the distance of slanting surface of dam, dimensions and cubic volume. It can be made full use of as important source material of reinforcement and maintenance works to detect previously the bulging of the dam through this research.

  • PDF

Study on Discrimination between Natural Earthquakes and Man-made Explosions using Wonju KSRS Data (원주 KSRS 자료를 이용한 자연지진과 인공지진 구별에 관한 연구)

  • Kang, Ik-Bum;Kim, Sung-Bae;Suh, Man-Cheol;Jun, Myung-Soon
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.25-36
    • /
    • 2000
  • 3-D Spectrograms for 22 events are drawn to discern about whether those are earthquakes or explosions. Generally, in case of explosions relative to the case of earthquakes, amplitude of P phase is more dominantly shown. According to the results on logarithm of spectral ratio of P (Pn, Pg)/Lg after removing free-surface effects from 3-D (U-D, N-S, E-W) seismogram, $-1.2{\sim}-0.9$ is shown for earthquakes and $-0.7{\sim}-0.1$ if shown for explosions. This result is consistent with previous researches (Kim Park, 1997) that -0.6 of spectral ratio between P and Lg after taking logarithm may be the criterion for the discrimination between earthquakes and explosions in Korea. In addition, Complexity is applied to two events as another discrimination method. The value of Complexity of explosion is much smaller than that of earthquake. This may be due to well-developed P-wave in explosion compared to that in earthquake. This result is in accordance with that of 3-D Spectrogram.

  • PDF

Palaeomgnetic Study on the Cretaceous Rocks in the Konchonri Area of the Northern Milyang Subbasin, Korea (밀양소분지 건천리 일원의 백악기 암석에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Yun, Sung-Hyo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • A palaeomagnetic study was carried out on Early through Late Cretaceous sandstones and volcanic sequences (the Songnaedong Formation, Chaeyaksan Volcanics, Konchonri Formation, and Jusasan Andesite it ascending order) from Konchonri area in the northern Milyang subbasin of the Kyongsang Basin, Korea. A high-temperature stable remanence with direction of $d=22.9^{\circ},\;i=59.1^{\circ}\;({\alpha}_{95}=3.0^{\circ})$ has been isolated and a corresponding pole was $71.6^{\circ}N,\;199.6^{\circ}E\;(A_{95}=4.2^{\circ})$. The characteristic high-temperature component resides in both hematite and magnetite. The primary nature of this remanence is confirmed from positive fold and reversals tests, The palaeopole is consistent with those of the Hayang Group in other parts of the Kyongsang Basin. A comparison of the palaeomagnetic pole position from the studied area with the contemporary pole from China west of the Tan-Lu fault presents that Konchonri area has experienced little latitudinal displacement nor vertical-axis block rotation relative to the Chinese blocks since the Cretaceous. Based on the formations indicating dual polarity, radiometric and paleontologic data, the magnetostratigraphic age of the studied sequence from the Songnedong Formation to the Jusasan Andesite ranges from upper Albian to lower Campanian reverse polarity chronozone. On the other hand, volcanic samples of the Chaeyaksan Volcanics and the Jusasan Andesite showed the scattered directions considered in group, even though individual sample showed a stable remanent magnetization in response to thermal demagnetization. It indicates that they have been reworked after acquisition of the stable remanent magnetization.

  • PDF

The Development of Multi-channel Electrical Conductivity Monitoring System and its Application in the Coastal Aquifer (다채널 전기전도도 모니터링 시스템의 개발과 연안지역 공내수 모니터링에 대한 적용 사례)

  • Shin, Je-Hyun;Hwang, Se-Ho;Park, Kwon-Gyu;Park, Yun-Seong;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.156-162
    • /
    • 2005
  • Particularly in research related to seawater intrusion the change of fluid electrical conductivity is one of major concerns, and effective monitoring can help to optimize a water pumping performance in coastal areas. Special considerations should be given to the mounting of sensors at proper depth during the monitoring design since the vertical distribution of fluid electrical conductivity is sensitive to the characteristics of seawater intrusion zone. This tells us the multi-channel electrical conductivity monitoring is of paramount consequence. It, however, is a rare event when this approach becomes routinely available in that commonly used commercial stand-alone type sensors are very expensive and inadequate for a long term monitoring of electrical conductivity or water level due to their restricted storage and difficulty of real-time control. For this reason, we have developed a real-time monitoring system that could meet these requirements. This system is user friendly, cost-effective, and easy to control measurement parameters - sampling interval, acquisition range, and others. And this devised system has been utilized for the electrical conductivity monitoring in boreholes, Yeonggwang-gun, Korea. Monitoring has been consecutively executed for 24 hours, and the responses of electrical conductivity at some channels have been regularly increased or decreased while pumping up water. It, with well logging data implemented before/after pumping water, verifies that electrical conductivity changes in the specified depths originate from fluid movements through sand layer or permeable fractured rock. Eventually, the multi-channel electrical conductivity monitoring system makes an effective key to secure groundwater resources in coastal areas.

UHF Electromagnetic Perturbation due to the fluctuation of Conductivity in a Fault Zone (단층대의 전기전도도 변동에 의한 UHF 전자기장 교란)

  • Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo;Oh SeokHoon;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • ULF geomagnetic field anomalies related to earthquakes have been reported and a mechnism that magnetic field variations could be generated by the induced telluric current due to the high frequency fluctuation of conductivity in a fault Bone have been proposed. In this study, we calculated electromagnetic anomalies using a simple fault model and investigated the possibility of significant perturbation. Since low frequency electromagnetic fields are modulated by the high frequency oscillation of conductivity and the modulated fields are concentrated in a narrow ULF band, the electromagnetic fields in ULF band could be perturbed significantly. The amplitude of electromagnetic field anomaly depends on various factors: the geometry and conductivity of fault zone, the magnitude and frequency of conductivity fluctuation, the resistivity structure of crust or mantle, the frequency bandwidth of observational data and so on. Therefore, it is strongly required to reveal the deep resistivity structure of crust a.: well ah the structure of fault zone and to ,select the optimal observation frequency band for the observation of electromagnetic activities related with earthquakes.