• Title/Summary/Keyword: geophysical data

Search Result 962, Processing Time 0.029 seconds

Ground stability analysis on the limestone region

  • Choi Sung O.;Kim Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.281-287
    • /
    • 2003
  • A Natural cavities were found at shallow depth during construction of a huge bridge in Moon-Kyung, Korea. The distribution patterns of cavities in the Moon-Kyung limestone were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map on this area. It suggested that there were three faults in this area, and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied firstly on the specific area that was selected by results from the geological survey. Many evidences for cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target area, which was focused by results from the electrical resistivity prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced. Based on the project result, finally, most of foundations for the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

  • PDF

A Study of 3D Ore-Modeling by Integrated Analysis of Borehole and Geophysical Data (시추자료와 물리탐사자료의 복합해석을 통한 3차원 광체 모델링 연구)

  • Noh, Myounggun;Oh, Seokhoon;Ahn, Taegyu
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.257-267
    • /
    • 2013
  • 3-D ore modeling was performed to understand the configuration of ore bodies by integrated analysis of borehole and geophysical data in iron-mine area. Five representative indices of rocks were designated, which were obtained from geological survey and borehole. The five indices of rocks were geostatistically simulated by Sequential Indicator Simulation method to delineate boundary of the ore bodies. And Ordinary Kriging and Sequential Gaussian Simulation was applied to make secondary information using resistivity data from magnetotellurics and DC resistivity survey, and this information was used for simple kriging with local varying means, one of integrated kriging techniques. From the correlation analysis between each properties, it was found that high grade of ore is characterized by increased density, whereas the electrical resistivity decreases. With the integrated results of geophysical and borehole data, it was also found that the real configuration of ore body was similar to the modeled result and information about ore grade in 3-D space was obtained.

A proposal of marine geophysical exploration techniques for offshore plant installation (해양플랜트 설치를 위한 해양물리탐사 기법 제안)

  • Ha, Ji-Ho;Ko, Hwi-Kyung;Cho, Hyen-Suk;Chung, Woo-Keen;Ahn, Dang;Shin, Sung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.242-251
    • /
    • 2013
  • Recently, while global concern over offshore resources exploration and development is being increased rapidly, offshore plant industry is highlighted as an industry of high added value. Along with this global trend, domestic concern over offshore plant development is being increased as well. In the overseas case, a marine geotechnical survey guideline for confirming characteristics of seabed sediments is available at the time of installation of offshore plant but such guideline is not available in our country. In this study, survey techniques fit for domestic marine environment was applied according to overseas guideline at southern coastal area, Korea. Among the marine geophysical survey techniques being proposed abroad, magnetic survey and seabed photograph were excluded. However, highly reliable data analysis was enabled for marine geophysical survey, which includes in-situ coring investigation and laboratory soil test. In addition, continuous ocean current survey was included to find scour potential due to the current around the offshore plant. Although coring depth is not so deep, we predicted geological structure through the analysis of amplitude features of seismic data. Characteristics of seabed sediments cold be obtained regionally and directly through combined analysis of marine geophysical survey data and coring data.

Investigation of Indicator Kriging for Evaluating Proper Rock Mass Classification based on Electrical Resistivity and RMR Correlation Analysis (RMR과 전기비저항의 상관성 해석에 기초하여 지시크리깅을 적용한 최적 암반 분류 기법 고찰)

  • Lee, Kyung-Ju;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2009
  • In this study geostatistical technique using indicator kriging was performed to evaluate the optimal rock mass classification by integrating the various geophysical information such as borehole data and geophysical data. To get the optimal kriging result, it is necessary to devise the suitable technique to integrate the hard (borehole) and soft (geophysical) data effectively. Also, the model parameters of the variogram must be determined as a priori procedure. Iterative non-linear inversion method was implemented to determine the model parameters of theoretical variogram. To verify the algorithm, behaviour of object function and precision of convergence were investigated, revealing that gradient of the range is extremely small. This algorithm for the field data was applied to a mountainous area planned for a large-scale tunneling construction. As for a soft data, resistivity information from AMT survey is incorporated with RMR information from borehole data, a sort of hard data. Finally, RMR profiles were constructed and attempted to be interpreted at the tunnel elevation and the upper 1D level.

Application of Homomorphic Filtering to Satellite Imagery and Geophysical Image Data (위성영상 및 지구물리 영상자료의 호모몰픽 필터링 적용)

  • Yoo Hee-Young;Lee Kiwon;Kwon Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • Homomorphic filtering improves image by enhancing high components and reducing low components in the Sequency domain based on FFT, as one of useful digital image processing techniques. In this study, the application program f3r homomorphic filtering was developed. Using this program, satellite imageries and geophysical image such as magnetic image data were processed and their results were analyzed. In case of applying to other techniques suck as histogram equalization and kernel-based masking f3r the same purpose. they often cause the slight distortion of boundary or overall change of brightness values on the whole image. Whereas. homomorphic filtering has ability to enhance selectively detailed components in a target image. Therefore. this technique can be effectively used for extraction or separation of complex types of characteristics contained in the satellite imagery. In addition, this technique would be applicable to investigate anomalous zone in various geophysical image data.

Joint Inversion of DC Resistivity and Travel Time Tomography Data: Preliminary Results (전기비저항 주시 토모그래피 탐사자료 복합역산 기초 연구)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Cho, Chang-Soo;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.314-321
    • /
    • 2007
  • Recently, multi-dimensional joint inversion of geophysical data based on fundamentally different physical properties is being actively studied. Joint inversion can provide a way to obtaining much more accurate image of the subsurface structure. Through the joint inversion, furthermore, it is possible to directly estimate non-geophysical material properties from geophysical measurements. In this study, we developed a new algorithm for jointly inverting dc resistivity and seismic traveltime data based on the multiple constraints: (1) structural similarity based on cross-gradient, (2) correlation between two different material properties, and (3) a priori information on the material property distribution. Through the numerical experiments of surface dc resistivity and seismic refraction surveys, the performance of the proposed algorithm was demonstrated and the effects of different regularizations were analyzed. In particular, we showed that the hidden layer problem in the seismic refraction method due to an inter-bedded low velocity layer can be solved by the joint inversion when appropriate constraints are applied.

Stability Analysis on the Substructure of Abutment in Limestone Basin (석회암층 교대 하부 구조물의 안정성 해석)

  • 최성웅;김기석
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.120-129
    • /
    • 2002
  • Natural cavitied were found at shallow depth during construction of a huge bridge in Cambro-Ordovician Limestone Basin in the central part or Korea. The distribution patterns of cavities in this area were investigated carefully with a supplementary field job such as a structural geological survey, a geophysical survey, and a rock mechanical test in laboratory or field. A structural geological mapping produced a detail geological map focusing the route of the Proposed highway. It suggested that there were three faults in this wet and these faults had an influence on the mechanism of natural cavities. Among many kinds of geophysical surveys, an electrical resistivity prospecting was applied first on the specific area that was selected by results from the geological survey. Many evidences far cavities were disclosed from this geophysical data. Therefore, a seismic tomography was tested on the target wet which was focused by results from the electrical resistivity Prospecting and was believed to have several large cavities. A distinct element numerical simulation using the UDEC was followed on the target area after completing all of field surveys. Data from field tests were directly dumped or extrapolated to numerical simulations as input data. It was verified from numerical analysis that several natural cavities underneath the foundation of the bridge should be reinforced Based on the project result, finally, most of fecundations far the bridge were re-examined and the cement grouting reinforcement was constructed on several foundations among them.

Suggestion for the Maintenance Program of the Sea Dike Using Geophysical Methods (지구물리학적 방법을 이용한 방조제 유지·관리 체계 제안)

  • Yong, Hwan-Ho;Cho, In-Ky;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.275-283
    • /
    • 2013
  • The sea dike is the most important facility of reclamation projects, and plays an important role in securing freshwater in the reservoir. Systematic research on practical approaches and data analysis techniques are lacking even though some geophysical methods such as electrical resistivity and self-potential surveys are included within the inspection processes. Hence, geophysical methods were considered for improvement of precision safety diagnosis methods after problems in the maintenance system have been identified, such as safety checks and precision safety diagnoses. In addition, geophysical methods customized according to variations in ambient environmental limiting factors such as pore pressure changes by tidal fluctuation, compaction characteristics of the fill materials, and the surface condition of the embankment were suggested.

Verification of grouting effectiveness using geophysical methods in fractured rock (지구물리탐사법을 활용한 절리 발달 암반 지역에서의 그라우팅 효과 판정)

  • Kim, Hyoung-Soo;Baik, Keon-Ha;Kim, Jung-Yul;Kim, Yoo-Sung;Sohn, Ho-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.175-198
    • /
    • 2002
  • The techniques using geophysical methods were adopted to obtain quantitative criteria for assessment of grouting effectiveness. Various surface and borehole geophysical surveys including seismic, GPR(ground penetrating radar), resistivity and electromagnetic methods were conducted in fractured rock pilot site before and after grouting execution. However, it is not enough that geophysical data provide criteria for field engineers to confirm the grouting effectiveness in that site even though there is somewhat difference before and after grouting. This study will be continued for the detailed criteria and assessment of grouting effectiveness in other sites.

  • PDF

Georadar System Using Network-Analyzer (네트웍 분석기를 이용한 레이다탐사 시스템의 구현)

  • Cho Seong-Jun;Kim Jung-Ho;Lee Seoung Kon;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.272-279
    • /
    • 2002
  • During field survey of ground penetrating radar or borehole radar, we often encounter some problems which could be solved easily by modifying structure of the system such as antenna length, shape or array. In addition, it is necessary that the user could easily modify configuration of the radar system na test various array of antennas in order to verify and confirm numerical modeling results concerning radar antennas. We have developed network-analyzer-based, stepped-frequency georadar system. This system had been comprised with coaxial cable to confirm possibility of the system, then we have upgraded the system to use optical cable that is composed of optical/electric transducers, electric/optical transducers, amp, pre-amp and antennas. The software for the aquisition of data has been developed to control the system automatically using PC with GPIB communication and to display the obtained data graphically. We have tested the system in field survey na the results have been compared with those of RAMAC/GPR system.