• Title/Summary/Keyword: geophysical data

Search Result 966, Processing Time 0.026 seconds

Gas Hydrate Exploration Using LWD/MWD in the Ulleung Basin, the East Sea of Korea (LWD/MWD를 이용한 동해 울릉분지 가스하이드레이트 탐사)

  • Kim, Gil-Young;Yoo, Dong-Geun;Kim, Won-Sik;Lee, Ho-Young;Park, Keun-Pil
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.263-270
    • /
    • 2008
  • The Gas Hydrate Research and Development Organization (KGHDO) of Korea accomplished successfully geophysical logging (LWD: Logging While Drilling, MWD: Measurement While Drilling) for five sites in 2007, in order to investigate the presence of gas hydrate in the Ulleung Basin, the East Sea of Korea. The togging parameters acquired from LWD/MWD dre electrical resistivity, acoustic velocity, neutron density and porosity, and natural gamma. In addition, pressure, temperature, and diameter of borehole were measured. LWD/MWD data showed several evidences indicating the presence of gas hydrate. Based on LWD/MWD data, three coring sites were selected for sampling of gas hydrate. Subsequently, various gas hydrate samples were collected directly from three sites. Therefore. the presence of gas hydrates was verified by coring. LWD/MWD data will be significantly used to estimate the amount of gas hydrate. Also, they will provide important information to elucidate about sedimentologic characteristics of gas-hydrate bearing formation and sedimentary environment of the Ulleung Basin.

An Analysis of Geophysical and Temperature Monitoring Data for Leakage Detection of Earth Dam (흙댐의 누수구역 판별을 위한 물리탐사와 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Suh, Baek-Soo;Kim, Joong-Ryul
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.563-572
    • /
    • 2010
  • Both multi-channel temperature monitoring and geophysical electric survey were performed together for an embankment to assess the leakage zone. Temperature variation according to space and time on the inner parts of engineering constructions (e.g.: dam and slope) can be basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation (e.g.: cracks and defects) could be generated by various factors. Seepage or leakage of water through the cracks or defects in old dams will directly cause temperature anomaly. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For that matter, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body. Geophysical data by electrical method are also added to help interpret data.

Morphotectectics of the Shackleton Fracture Zone around the Antarctic-Scotia plate boundary off the northern Antarctic Peninsula (남극반도 북부 남극-스코시아 판경계부에서의 셰클턴 파쇄대의 지형지체구조)

  • Jin, Young-Keun;Kim, Yea-Dong;Nam, Sang-Heon;Kim, Kyu-Joong
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.141-152
    • /
    • 2000
  • In the vicinity of the Antarctic-Scotia plate boundary off Elephant Island(EI), geophysical data(multichannel seismic and gravity data) reveal rapid structural variation of the Shackleton Fracture Zone(SFZ) along its strike. The SFZ ridge terminates in front of the Antarctic Peninsula margin, whereas the transform fault of the SFZ continues farther southeast near EI and the width of the SFZ broadens toward the southeast. Accordingly, the SFZ transform fault changes its morphology along its strike as (1) a graben structure along the high Shackleton ridge in Drake Passage, (2) a half-graben structure in oceanic crust just southeast of the Antarctic-Scotia plate boundary, and (3) splay faults deforming the margin of EI. Two phases of tectonic deformation are clearly observed along the transform fault. Major extensional deformation had formed a large-scale half-graben during roughly about $10{\sim}20$ Ma when Drake Passage had opened. And then, the Shackleton fault has been reactivated with reverse sense, which has been caused by recent convergence between Antarctic and Scotia plates due to westward movement of the Scotia plate since 6 Ma.

  • PDF

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

Interpretation on the subsurface velocity structure by seismic refraction survey in tunnel and slope (탄성파 굴절법 탐사를 이용한 지반 속도분포 해석-터널 및 절토 사면에의 적용 사례)

  • You Youngjune;Cho Chang Soo;Park Yong Soo;Yoo In Kol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.48-64
    • /
    • 1999
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsurface velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etc. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data quality Geophone spacing of 3 to 5m is recommended in the land slope area for house land development and 5 to 10m in the tunnel site. In refraction tomography technique, the number of source points should be more than a half of available channel number of instrument, which can make topographic effect ignorable. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700${\~}$1,200m/s, soft rock 1,200${\~}$1,800m/s. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss. In case of tunnel site, it is recommended in tunnel design and construction to consider that tunnel is in contact with soft rock layer where three lineaments intersecting each other are recognized from the results of the other survey.

  • PDF

Discovery of the Dmitri Donskoi ship near Ulleung Island(East Sea of Korea), using geophysical surveys (물리탐사기술을 이용한 침몰선 Dmitri Donskoi호 탐사)

  • Yoo, Hai-Soo;Kim, Su-Jeong;Park, Dong-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.104-111
    • /
    • 2005
  • Dmitri Donskoi, the Russian cruiser launched in 1883, is known to have sunk near Ulleung Island (East Sea, Korea) on May 29, 1905, while it was participating in the Russo-Japanese War. In order to find this ship, information about its possible location was obtained from Russian and Japanese maritime historical records. The supposed location of the ship was identified, and we conducted a five-year geophysical survey from 1999 to 2003. A reconnaissance three-dimensional topographic survey of the sea floor was carried out using multi-beam echo sounder, marine magnetometer, and side-scan sonar. An anomalous body identified through the initial reconnaissance survey was identified by a detailed survey using a remotely operated vehicle, deep-sea camera, and the mini-submarine Pathfinder. Interpretation of the acquired data showed that the ship is hanging on the side of a channel, at the bottom of the sea 400 m below sea level. The location is about 2 km from Port Jeodong, Uleung Island. We discovered 152 mm naval guns and other war materiel still attached to the hull of the ship. In addition, the remnants of the steering gear and other machinery that were burnt during the final action were found near the hull. Strong magnetic fields, resulting from the presence of volcanic rocks in the survey area, affected the resolution of the magnetic data gathered; as a result, we could not locate the ship reliably using the magnetic method. Severe sea floor topography in the gully around the hull gave rise to diffuse reflections in the side-scan sonar data, and this prevented us from identifying the anomalous body with the side-scan sonar technique. However, the sea-floor image obtained from the multi-bean echo sounder was very useful in verifying the location of the ship.

Geophysical Logging of Frequency-domain Induced Polarization for Mineral Exploration (광물탐사를 위한 진동수영역 유도분극 물리검층)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.73-77
    • /
    • 2021
  • Induced polarization (IP) is useful for mineral exploration and hydrogeological studies by visualizing the electrochemical reactions at the interface between polarized minerals and groundwater. Frequency-domain IP (FDIP) is not actively applied to field surveys because it takes longer to acquire data, despite its higher data quality than conventional time-domain IP. However, data quality is more important in current mineral exploration as the targets gradually shift to deep or low-grade ore bodies. In addition, the measurement time reduced by automated instrumentation increases the potential for FDIP field applications. Therefore, we demonstrate that FDIP can detect mineral exploration targets by performing geophysical logging in the boreholes of a skarn deposit, in South Korea. Alternating current (AC) resistivity, percent frequency effect (PFE) and metal factor (MF) were calculated from impedance values obtained at two different frequencies. Skarn zones containing magnetite or pyrite showed relatively low AC resistivity, high PFE, and high MF compared to other zones. Therefore, FDIP surveys are considered to be useful for mineral exploration.

A New Correction Method for Ship's Viscous Magnetization Effect on Shipboard Three-component Magnetic Data Using a Total Field Magnetometer (총자력계를 이용한 선상 삼성분 자기 데이터의 선박 점성 자화 효과에 대한 새로운 보정 방법 연구)

  • Hanjin Choe;Nobukazu Seama
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.119-128
    • /
    • 2024
  • Marine magnetic surveys provide a rapid and cost-effective method for pioneer geophysical survey for many purposes. Sea-surface magnetometers offer high accuracy but are limited to measuring the scalar total magnetic field and require dedicated cruise missions. Shipboard three-component magnetometers, on the other hand, can collect vector three components and applicable to any cruise missions. However, correcting for the ship's magnetic field, particularly viscous magnetization, still remains a challenge. This study proposes a new additional correction method for ship's viscous magnetization effect in vector data acquired by shipboard three-component magnetometer. This method utilizes magnetic data collected simultaneously with a sea-surface magnetometer providing total magnetic field measurements. Our method significantly reduces deviations between the two datasets, resulting in corrected vector anomalies with errors as low as 7-25 nT. These tiny errors are possibly caused by the vector magnetic anomaly and its related viscous magnetization. This method is expected to significantly improve the accuracy of shipborne magnetic surveys by providing corrected vector components. This will enhance magnetic interpretations and might be useful for understanding plate tectonics, geological structures, hydrothermal deposits, and more.

EZXover: C program to Reduce Cross-over Errors in Marine Geophysical Survey Data (지구물리탐사자료에서 교차점오차를 보정하기위한 EZXover 프로그램 개발)

  • Kang Moo-Hee;Han Hyun-Chul;Kim Kyong-O;SunWoo Don;Kim Jin-Ho;Gong Gee-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.229-234
    • /
    • 2006
  • Cross-over errors (XOEs) may mislead scientists when interpreting marine geophysical data. Such risk can be reduced by correcting the data proportionally between two cross-over points (XOPs). C program is presented to determine XOPs using a quick rejection test and a straddle test, and to adjust XOEs using a weighted linear interpolation algorithm.

Potential of gas generation and/or natural gas hydrate formation, and evidences of their presence in near seafloor sediments of the southwestern Ulleung Basin, East Sea (동해 울릉분지 남서부 천부 퇴적층에서의 가스 생성 및 천연가스 하이드레이트 형성 잠재력과 이들의 부존 증거)

  • Ryu, Byong-Jae;Lee, Young-Joo;Kim, Ji-Hoon;Riedel, M.;Hyndman, R.D.;Kim, Il-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.50-53
    • /
    • 2006
  • Regional geophysical surveys and geological cal studies on natural gas hydrate (NGH) in the East Sea were carried out by the Korea Institute of Geoscience and Mineral Resources (KIGAM) from 2000 to 2004. 16 piston cores, 2270 L-km of multi-channel reflection seismic (MCRS) data and 730 L-km of 3.5kHz Chirp data obtained from the southwestern part of the deep-water Ulleung Basin were analyzed in this study. In piston cores, cracks generally developed parallel to bedding suggest significant gas content. The core analyses showed high total organic carbon (TOC) content, sedimentation rate and heat flow of sediments. These are in favor of the general ion of substantial biogenic methane, which can form the NGH within the stability zone of the near seafloor sediments in the study area. The cores generally show also high residual hydrocarbon gas concentrations for the formation of natural gas hydrates The geophysical indicators of the presence of gas and/or NGH such as bottom simulating reflectors (BSRs), seismic blank Bones, pockmarks and gas seeping features were well defined on the MCRS and Chirp data.

  • PDF