• Title/Summary/Keyword: geometry parameters

Search Result 1,117, Processing Time 0.028 seconds

Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests

  • Panaghi, Kamran;Golshani, Aliakbar;Takemura, Takato
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.793-813
    • /
    • 2015
  • Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.

Application of Diffraction Tomography to GPR Data (지표레이다 자료에 대한 회절지오토모그래피의 적용성 연구)

  • Kim Geun-Young;Shin Changsoo;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.64-70
    • /
    • 1998
  • Diffraction tomography (DT) is a quantitative technique for high resolution subsurface imaging. In general DT algorithm is used for crosswell imaging. In this study high resolution GPR DT algorithm which is able to reconstruct high resolution image of subsurface structures in multi-monostatic geometry is developed. Developed algorithm is applied to finite difference data and its criteria of application and its limit are studied. Inversion parameters (number of imaging frequency, regularization factor, frequency range) are deduced from isolated weak scattering model. And the usuability of the algorithm is proved by applying to models which break the weak scattering approximation.

  • PDF

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

Conceptual design of neutron measurement system for input accountancy in pyroprocessing

  • Lee, Chaehun;Seo, Hee;Menlove, Spencer H.;Menlove, Howard O.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1022-1028
    • /
    • 2020
  • One of the possible options for spent-fuel management in Korea is pyroprocessing, which is a process for electrochemical recycling of spent nuclear fuel. Nuclear material accountancy is considered to be a safeguards measure of fundamental importance, for the purposes of which, the amount of nuclear material in the input and output materials should be measured as accurately as possible by means of chemical analysis and/or non-destructive assay. In the present study, a neutron measurement system based on the fast-neutron energy multiplication (FNEM) and passive neutron albedo reactivity (PNAR) techniques was designed for nuclear material accountancy of a spent-fuel assembly (i.e., the input accountancy of a pyroprocessing facility). Various parameters including inter-detector distance, source-to-detector distance, neutron-reflector material, the structure of a cadmium sleeve around the close detectors, and an air cavity in the moderator were investigated by MCNP6 Monte Carlo simulations in order to maximize its performance. Then, the detector responses with the optimized geometry were estimated for the fresh-fuel assemblies with different 235U enrichments and a spent-fuel assembly. It was found that the measurement technique investigated here has the potential to measure changes in neutron multiplication and, in turn, amount of fissile material.

The effect of compression load and rock bridge geometry on the shear mechanism of weak plane

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.431-446
    • /
    • 2017
  • Rock bridges in rock masses would increase the bearing capacity of Non-persistent discontinuities. In this paper the effect of ratio of rock bridge surface to joint surface, rock bridge shape and normal load on failure behaviour of intermittent rock joint were investigated. A total of 42 various models with dimensions of $15cm{\times}15cm{\times}15cm$ of plaster specimens were fabricated simulating the open joints possessing rock bridge. The introduced rock bridges have various continuities in shear surface. The area of the rock bridge was $45cm^2$ and $90cm^2$ out of the total fixed area of $225cm^2$ respectively. The fabricated specimens were subjected to shear tests under normal loads of 0.5 MPa, 2 MPa and 4 MPa in order to investigate the shear mechanism of rock bridge. The results indicated that the failure pattern and the failure mechanism were affected by two parameters; i.e., the ratio of joint surface to rock bridge surface and normal load. So that increasing in joint area in front of the rock bridge changes the shear failure mode to tensile failure mode. Also the tensile failure change to shear failure by increasing the normal load.

Brittle Deformation History Based on the Analyses of Dikes and Faults within Sedimentary Rocks on Geoje Island, SE Korea

  • Hategekimana, Francois;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.239-255
    • /
    • 2021
  • Kinematic analyses of magmatic intrusions and faults can provide useful information on stress conditions and chronological relationships between dike emplacement and brittle deformation events. We studied structures in rocks exposed on a coastal platform in Geoje Island off the southern Korean Peninsula because of its well-developed dikes and faults. The geology of the study area includes the Cretaceous Seongpo-ri Formation, which is composed mostly of shale, sandstone, and hornfels intruded by magmatic dikes. Most of the dikes are developed along pre-existing structural features (faults and fractures), indicating that their emplacements were structurally controlled. Because dikes commonly open along the direction of the minimum principal stress, the direction of this stress can be obtained from dike geometry and orientation through the matching of piercing points on either side of a dike. In addition, the deformed dikes can give information regarding later deformation. On the basis of the kinematic analyses, we identified five deformation events in the study area, which are kinematically related to changes of the regional maximum principal stress. Results indicate that the structures in the study area have been controlled predominantly by episodes of reactivation of the NNE-trending Yangsan strike-slip fault, located to the northeast of the study area, under different stress regimes. In a wider tectonic context, the brittle deformation of the rocks of Geoje Island was probably induced by interactions among the Philippine Sea, Pacific, and Eurasian plates, including changes in subduction parameters with respect to the latter two plates over time.

Conjugate Point Extraction for High-Resolution Stereo Satellite Images Orientation

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.55-62
    • /
    • 2019
  • The stereo geometry establishment based on the precise sensor modeling is prerequisite for accurate stereo data processing. Ground control points are generally required for the accurate sensor modeling though it is not possible over the area where the accessibility is limited or reference data is not available. For the areas, the relative orientation should be carried out to improve the geometric consistency between the stereo data though it does not improve the absolute positional accuracy. The relative orientation requires conjugate points that are well distributed over the entire image region. Therefore the automatic conjugate point extraction is required because the manual operation is labor-intensive. In this study, we applied the method consisting of the key point extraction, the search space minimization based on the epipolar line, and the rigorous outlier detection based on the RPCs (Rational Polynomial Coefficients) bias compensation modeling. We tested different parameters of window sizes for Kompsat-2 across track stereo data and analyzed the RPCs precision after the bias compensation for the cases whether the epipolar line information is used or not. The experimental results showed that matching outliers were inevitable for the different matching parameterization but they were successfully detected and removed with the rigorous method for sub-pixel level of stereo RPCs precision.

Application of a support vector machine for prediction of piping and internal stability of soils

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • v.18 no.5
    • /
    • pp.493-502
    • /
    • 2019
  • Internal stability is an important safety issue for levees, embankments, and other earthen structures. Since a large part of the world's population lives near oceans, lakes and rivers, floods resulting from breaching of dams can lead to devastating disasters with tremendous loss of life and property, especially in densely populated areas. There are some main factors that affect the internal stability of dams, levees and other earthen structures, such as the erodibility of the soil, the water velocity inside the soil mass and the geometry of the earthen structure, etc. Thus, the mechanism of internal erosion and stability of soils is very complicated and it is vital to investigate the assessment methods of internal stability of soils in embankment dams and their foundations. This paper presents an improved support vector machine (SVM) model to predict the internal stability of soils. The grid search algorithm (GSA) is employed to find the optimal parameters of SVM firstly, and then the cross - validation (CV) method is employed to estimate the classification accuracy of the GSA-SVM model. Two examples of internal stability of soils are presented to validate the predictive capability of the proposed GSA-SVM model. In addition to verify the effectiveness of the proposed GSA-SVM model, the predictions from the proposed GSA-SVM model were compared with those from the traditional back propagation neural network (BPNN) model. The results showed that the proposed GSA-SVM model is a feasible and efficient tool for assessing the internal stability of soils with high accuracy.

Boundary Conditions and Fire Behavior of Concrete Filled Tubular Composite Columns

  • Rodrigues, Joao Paulo C.;Correia, Antonio J.M.;Kodur, Venkatesh
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.313-325
    • /
    • 2018
  • Concrete-filled steel tubular (CFST) members are commonly used as composite columns in modern construction. However, the current guidelines for members' fire design (EN1994-1-2) have been proved to be unsafe in case the relative slenderness is higher than 0.5. In addition, the simplified design methods of Eurocode 4 are limited to circular and square CFST columns, while in practice columns with rectangular and elliptical hollow sections are being increasingly used because of their architectural aesthetics. In the last years a large experimental research has been carried out at Coimbra University on the topic. They have been tested concrete filled circular, square, rectangular and elliptical hollow columns with restrained thermal elongation. Some parameters such as the slenderness, the type of cross-section geometry as well as the axial and rotational restraint of the surrounding structure to the column have been tested in order to evaluate their influence on the fire resistance of such columns. In this paper it is evaluated the influence of the boundary conditions (pin-ended and semi-rigid end-support conditions) on the behavior of the columns in case of fire. In these tests it could not be seen a marked effect of the tested boundary conditions but it is believed that the increasing of rotational stiffness increases the fire resistance of the columns.

Influence of Culture Conditions on Production of NGPs by Aspergillus tubingensis

  • Lilia, Lopez De Leon;Isaura, Caceres;Julie, Bornot;Elodie, Choque;Jose, Raynal;Patricia, Taillandier;Florence, Mathieu
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.9
    • /
    • pp.1412-1423
    • /
    • 2019
  • The filamentous fungus Aspergillus tubingensis that belongs to the black Aspergillus section has the capacity to produce high-value metabolites, for instance, naphtho-gamma-pyrones (NGPs). For these fungal secondary metabolites, numerous biological properties of industrial interest have been demonstrated, such as antimicrobial, antioxidant and anti-cancer capacities. It has been observed that production of these secondary metabolites is linked with fungal sporulation. The aim of this research was to apply osmotic and oxidative environmental stresses to trigger the production of NGPs in liquid cultures with CYB (Czapek Dox Broth). In addition, numerous parameters were tested during the experiments, such as pH value, incubation time, container geometry, and static and agitation conditions. Results demonstrate that the produced amount of NGPs can be enhanced by decreasing the water activity ($a_w$) or by adding an oxidative stress factor. In conclusion, this study can contribute to our knowledge regarding A. tubingensis to present an effective method to increase NGP production, which may support the development of current industrial processes.