• Title/Summary/Keyword: geometry parameters

Search Result 1,117, Processing Time 0.026 seconds

A study on the extrusion forming characteristics of construction materials with die and process parameters (금형 및 공정변수에 따른 층상복합재료의 압출성형 특성에 관한 연구)

  • Ko, Byung-Du;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.11-18
    • /
    • 2013
  • This paper presents the plastic inhomogeneous deformation behavior of bimetal composite rods during the axisymmetric and steady-state extrusion process through a conical die. The rigid-plastic FE model considering frictional contact problem was used to analyze the co-extrusion process with material combinations of Cu/Al. Different cases of initial geometry shape for composite material were simulated under different conditions of co-extrusion process, which includes the interference and frictional conditions. The main design parameters influencing on deformation pattern are diameter ratio of the composite components and semi-die angle. Efforts are focused on the deformation patterns, velocity gradient, predicted forming load and the end distance through the various simulations. Simulation results indicate that there is an obvious difference of forming pattern with various diameter ratio and semi-die angle. The analysis in this paper is concentrated on the evaluation of the design parameters on the deformation pattern of composite rod.

  • PDF

Traffic Accident Models using a Random Parameters Negative Binomial Model at Signalized Intersections: A Case of Daejeon Metropolitan Area (Random Parameters 음이항 모형을 이용한 신호교차로 교통사고 모형개발에 관한 연구 -대전광역시를 대상으로 -)

  • Park, Minho;Hong, Jungyeol
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • PURPOSES : The purpose of this study is to develop a crash prediction model at signalized intersections, which can capture the randomness and uncertainty of traffic accident forecasting in order to provide more precise results. METHODS : The authors propose a random parameter (RP) approach to overcome the limitation of the Count model that cannot consider the heterogeneity of the assigned locations or road sections. For the model's development, 55 intersections located in the Daejeon metropolitan area were selected as the scope of the study, and panel data such as the number of crashes, traffic volume, and intersection geometry at each intersection were collected for the analysis. RESULTS : Based on the results of the RP negative binomial crash prediction model developed in this study, it was found that the independent variables such as the log form of average annual traffic volume, presence or absence of left-turn lanes on major roads, presence or absence of right-turn lanes on minor roads, and the number of crosswalks were statistically significant random parameters, and this showed that the variables have a heterogeneous influence on individual intersections. CONCLUSIONS : It was found that the RP model had a better fit to the data than the fixed parameters (FP) model since the RP model reflects the heterogeneity of the individual observations and captures the inconsistent and biased effects.

THE SIMPLE METHOD OF GEOMETRIC RECONSTRUCTION FOR SPOT IMAGES

  • JUNG HYUNG-SUP;KIM SANG-WAN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.205-207
    • /
    • 2004
  • The simple method of the geometric reconstruction of satellite linear pushbroom images is investigated. The model of the sensor used is based on the SPOT model that is developed by Kraiky. The satellite trajectory is a Keplerian trajectory in the approximation. Four orbital parameters, longitude of the ascending $node(\omega),$ inclination of the orbit plan(I), latitude argument of the satellite(W) and distance between earth center and satellite, are used for the camera modeling. We suppose that four orbital parameters and satellite attitude angles are exactly acquired. Then, in order to refine model, the given attitude angles and orbital parameters is not changed, but time-independent four parameters associated with LOS(Line Of Sight) vector is updated. A pair of SPOT-5 images has been used for validation of proposed method. Two GCPs acquired by GPS survey is used to controlling the LOS vector. The results are that the RMSE of 16 checking points are about 4.5m. Because the ground resolution of SPOT-5 is 2.5m, the result obtained in this study has a good accuracy. It demonstrates that the sensor model developed by this study can be used to reconstruct the geometry of satellite image taken by pushbroom camera.

  • PDF

Experimental Methodology Development for SFR Subchannel Analysis Code Validation with 37-Rods Bundle (소듐냉각고속로 부수로 해석코드 검증을 위한 37봉다발 실험방법 개념 개발)

  • Euh, Dong-Jin;Chang, Seok-Kyu;Bae, Hwang;Kim, Seok;Kim, Hyung-Mo;Choi, Hae-Seob;Choi, Sun-Rock;Lee, Hyung-Yeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.89-94
    • /
    • 2014
  • The 4th generation SFR is being designed with a milestone of construction by 2028. It is important to understand the subchannel flow characteristics in fuel assembly through the experimental investigations and to estimate the calculation uncertainties for insuring the confidence of the design code calculation results. The friction coefficient and the mixing coefficient are selected as primary parameters. The two parameters are related to the flow distribution and diffusion. To identify the flow distribution, an iso-kinetic method was developed based on the previous study. For the mixing parameters, a wire mesh system and a laser induced fluorescence methods were developed in parallel. The measuring systems were adopted on 37 rod bundle test geometry, which was developed based on the Euler number scaling. A scaling method for a design of experimental facility and the experimental identification techniques for the flow distribution and mixing parameters were developed based on the measurement requirement.

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2903-2908
    • /
    • 2010
  • Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.

The Visualization of figures represented by parameters (매개변수로 표현되는 도형의 시각화 방안)

  • 김향숙
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.317-333
    • /
    • 2001
  • The equations of figures given by rectangular coordinates are used to look into the properties of them, which are very restricted in examining them in the school mathematics. Therefore, it is quite natural to consider the figures in terms of parameters without restriction to coordinates and also, it is possible for the students to analyze them. Thus, the visualization of figures is important for students in mathematics education. In particular, the teaching-learning methods using computers make loose the difficulties of geometry education, and from the viewpoint that various abstract figures can be visualized and that can be obtained by means of this visualization the learning of figures can be accomplished through the direct experience or control. This study is intended to present concretely the aim and its utility to visualize figures represented as parameters with Mathematics. In this paper, we introduce a new teaching-learning method of figures represented by parameters using Mathematica so that the learners establish themselves their knowledge obtained through their search, investigation, supposition and they accomplish the positive transition to advanced learning. So the leasers extend their ability of sensuous intuition to their ability of logical reasoning through their logical intuition. Consequently they can develop the ability of thinking mathematically, so many natural phenomena and physical ones.

  • PDF

Colossal Magnetoresistance in La-Ca-Mn-O

  • Jin, Sungho
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.28-33
    • /
    • 1997
  • Very large in electrical resistivity by several orders of magnitude is obtained when an external magnetic field is applied to the colossal magnetoresistnace (CMR) materials such as La-Ca-Mn-O. The magnetoresistance is strongly temperature-dependent, and exhibits a sharp peak below room temperature, which can be shifted by adjusting the composition or processing parameters. The control of lattice geometry or strain, e.g., by chemical substitution, epitaxial growth or post-deposition anneal of thin films appears to be crucial in obtaining the CMR properties. The orders of magnitude change in electrical resistivity could be useful for various magnetic and electric device applications. .

  • PDF

Characteristics of the Running behavior and Safety for KTX due to Twist (수평틀림이 KTX 주행안전성에 미치는 영향 분석)

  • Choi, Il-Yoon;Lim, Yun-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.337-342
    • /
    • 2011
  • Vehicle dynamic behavior should be investigated to establish the track irregularity criteria because they have an impact on vehicle dynamic behavior. The influence of twist on running behavior and safety for KTX was instigated by numerical analysis among track geometry quality parameters such as vertical alignment, lateral alignment, twist and track gauge in this paper. The wavelength and amplitude of twist were considered in scenario of this numerical analysis. This research is based on just numerical analysis and the final result which include measurement will be published in the future.

  • PDF

Forced vibration analysis of cracked functionally graded microbeams

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.39-55
    • /
    • 2018
  • Forced vibration analysis of a cracked functionally graded microbeam is investigated by using modified couple stress theory with damping effect. Mechanical properties of the functionally graded beam change vary along the thickness direction. The crack is modelled with a rotational spring. The Kelvin-Voigt model is considered in the damping effect. In solution of the dynamic problem, finite element method is used within Timoshenko beam theory in the time domain. Influences of the geometry and material parameters on forced vibration responses of cracked functionally graded microbeams are presented.

A New CMOS IC Package Design Methodology Based on the Analysis of Switching Characteristics (CMOS IC 패키지의 스위치 특성 해석 및 최적설계)

  • 박영준;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1141-1144
    • /
    • 1998
  • A new design methodology for the shortchannel CMOS IC-package is presented. It is developed by representing the package inductance with an effective lumpedinductance. The worst case maximum-simultaneous-switching noise (SSN) and gate propagation delay due to the package are modeled in terms of driver geometry, the maximum number of simultaneous switching drivers, and the effective inductance. The SSN variations according to load capacitances are investigated with this model. The package design techniques based on the proposed guidelines are verified by performing HSPICE simulations with the $0.35\mu\textrm{m}$ CMOS model parameters.

  • PDF