• Title/Summary/Keyword: geometry of footing

Search Result 5, Processing Time 0.017 seconds

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Bearing capacity of strip footings on a stone masonry trench in clay

  • Mohebkhah, Amin
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.255-267
    • /
    • 2017
  • Soft clay strata can suffer significant settlement or stability problems under building loads. Among the methods proposed to strengthen weak soils is the application of a stone masonry trench (SMT) beneath RC strip foundations (as a masonry pad-stone). Although, SMTs are frequently employed in engineering practice; however, the effectiveness of SMTs on the ultimate bearing capacity improvement of a strip footing rested on a weak clay stratum has not been investigated quantitatively, yet. Therefore, the expected increase of bearing capacity of strip footings reinforced with SMTs is of interest and needs to be evaluated. This study presents a two-dimensional numerical model using the discrete element method (DEM) to capture the ultimate load-bearing capacity of a strip footing on a soft clay reinforced with a SMT. The developed DEM model was then used to perform a parametric study to investigate the effects of SMT geometry and properties on the footing bearing capacity with and without the presence of surcharge. The dimensions of the SMTs were varied to determine the optimum trench relative depth. The study showed that inclusion of a SMT of optimum dimension in a soft clay can improve the bearing capacity of a strip footing up to a factor of 3.5.

The use of neural networks for the prediction of the settlement of pad footings on cohesionless soils based on standard penetration test

  • Erzin, Yusuf;Gul, T. Oktay
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.541-564
    • /
    • 2013
  • In this study, artificial neural networks (ANNs) were used to predict the settlement of pad footings on cohesionless soils based on standard penetration test. To achieve this, a computer programme was developed to calculate the settlement of pad footings from five traditional methods. The footing geometry (length and width), the footing embedment depth, $D_f$, the bulk unit weight, ${\gamma}$, of the cohesionless soil, the footing applied pressure, Q, and corrected standard penetration test, $N_{cor}$, varied during the settlement analyses and the settlement value of each footing was calculated for each method. Then, an ANN model was developed for each traditional method to predict the settlement by using the results of the analyses. The settlement values predicted from the ANN model were compared with the settlement values calculated from the traditional method for each method. The predicted values were found to be quite close to the calculated values. It has been demonstrated that the ANN models developed can be used as an accurate and quick tool at the preliminary designing stage of pad footings on cohesionless soils without a need to perform any manual work such as using tables or charts. Sensitivity analyses were also performed to examine the relative importance of the factors affecting settlement prediction. According to the analyses, for each traditional method, $N_{cor}$ is found to be the most important parameter while ${\gamma}$ is found to be the least important parameter.

Experimental and finite element analyses of footings of varying shapes on sand

  • Anil, Ozgur;Akbas, S. Oguzhan;Babagiray, Salih;Gel, A. Cem;Durucan, Cengizhan
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.223-238
    • /
    • 2017
  • In this study, bearing capacities and settlement profiles of six irregularly shaped footings located on sand have been experimentally and analytically investigated under the effect of axial loading. The main variable considered in the study was the geometry of the footings. The axial loads were applied from the center of gravities of the test specimens. Consequently, the effect of footing shape on the variation of the bearing capacities and settlement profiles have been investigated in this paper. The three dimensional finite element analyses of the test specimens were conducted using the PLAXIS 3D software. The finite element model results are in acceptable agreement with the results obtained using experimental investigation. In addition, the usability of the finite element technique by design engineers to determine the bearing capacities and settlement profiles of irregularly shaped footings was investigated. From the results of the study, it was observed that the geometric properties of the footings significantly influenced the variation of the bearing capacities and settlement profiles.

A new model for T-shaped combined footings part I: Optimal dimensioning

  • Luevanos-Rojas, Arnulfo;Lopez-Chavarria, Sandra;Medina-Elizondo, Manuel
    • Geomechanics and Engineering
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2018
  • The foundations are classified into shallow and deep, which have important differences: in terms of geometry, the behavior of the soil, its structural functionality, and its constructive systems. The shallow foundations may be of various types according to their function; isolated footings, combined footings, strip footings, and slabs foundation. The isolated footings are of the type rectangular, square and circular. The combined footing may be rectangular, trapezoidal or T-shaped in plan. This paper presents a new model for T-shaped combined footings to obtain the most economical contact surface on the soil (optimal dimensioning) to support an axial load and moment in two directions to each column. The new model considers the soil real pressure, i.e., the pressure varies linearly. The classical model uses the technique of test and error, i.e., a dimension is proposed, and subsequently, the equation of the biaxial bending is used to obtain the stresses acting on each vertex of the T-shaped combined footing, which must meet the conditions following: The minimum stress should be equal or greater than zero, and maximum stress must be equal or less than the allowable capacity that can withstand the soil. To illustrate the validity of the new model, numerical examples are presented to obtain the minimum area of the contact surface on the soil for T-shaped combined footings subjected to an axial load and moments in two directions applied to each column.