• Title/Summary/Keyword: geometry learning

Search Result 243, Processing Time 0.027 seconds

The Effects of Counting Ability on Young Children's Mathematical Ability and Mathematical Learning Potential (수세기 능력이 유아의 수학능력과 수학학습잠재력에 미치는 영향)

  • Choi, Hye-Jin;Cho, Eun Lae;Kim, Sun Young
    • Korean Journal of Child Studies
    • /
    • v.34 no.1
    • /
    • pp.123-140
    • /
    • 2013
  • The purpose of this study was to examine the effects of counting ability on young children's mathematical ability and mathematical learning potential. The subjects in this study were 75 young children of 4 & 5 years old who attended kindergartens and child care center in the city of B. They were evaluated in terms of counting ability, mathematical ability and mathematical learning potential(training and transfer) and the correlation between sub-factors and their relative influence on the partipants' mathematical ability was then analyzed. The findings of the study were as follows : First, there was a close correlation between the sub-factors of counting and those of mathematical ability. As a result of checking the relative influence of the sub-factors of counting on mathematical ability, reverse counting was revealed to have the largest impact on total mathematical ability scores and each sub-factors including algebra, number and calculation, geometry and measurement. Second, the results revealed a strong correlation between counting ability and mathematical learning ability. Regarding the size of the relative influence of the sub-factors of counting ability on training scores, reverse counting was found to be most influential, followed by continuous counting. While in relation to transfer scores, reverse counting was found to exert the greatest influence.

Scanline Based Metric for Evaluating the Accuracy of Automatic Fracture Survey Methods (자동 균열 조사기법의 정확도 평가를 위한 조사선 기반의 지표 제안)

  • Kim, Jineon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.230-242
    • /
    • 2019
  • While various automatic rock fracture survey methods have been researched, the evaluation of the accuracy of these methods raises issues due to the absence of a metric which fully expresses the similarity between automatic and manual fracture maps. Therefore, this paper proposes a geometry similarity metric which is especially designed to determine the overall similarity of fracture maps and to evaluate the accuracy of rock fracture survey methods by a single number. The proposed metric, Scanline Intersection Similarity (SIS), is derived by conducting a large number of scanline surveys upon two fracture maps using Python code. By comparing the frequency of intersections over a large number of scanlines, SIS is able to express the overall similarity between two fracture maps. The proposed metric was compared with Intersection Over Union (IoU) which is a widely used evaluation metric in computer vision. Results showed that IoU is inappropriate for evaluating the geometry similarity of fracture maps because it is overly sensitive to minor geometry differences of thin elongated objects. The proposed metric, on the other hand, reflected macro-geometry differences rather than micro-geometry differences, showing good agreement with human perception. The metric was further applied to evaluate the accuracy of a deep learning-based automatic fracture surveying method which resulted as 0.674 (SIS). However, the proposed metric is currently limited to 2D fracture maps and requires comparison with rock joint parameters such as RQD.

A Study on Prediction of Optimized Penetration Using the Neural Network and Empirical models (신경회로망과 수학적 방정식을 이용한 최적의 용입깊이 예측에 관한 연구)

  • 전광석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.70-75
    • /
    • 1999
  • Adaptive control in the robotic GMA(Gas Metal Arc) welding is employed to monitor the information about weld characteristics and process paramters as well as modification of those parameters to hold weld quality within the acceptable limits. Typical characteristics are the bead geometry composition micrrostructure appearance and process parameters which govern the quality of the final weld. The main objectives of this paper are to realize the mapping characteristicso f penetration through the learning. After learning the neural network can predict the pene-traition desired from the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) were chosen from an error analysis. partial-penetration single-pass bead-on-plate welds were fabricated in 12mm mild steel plates in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the penetration with reasonable accuracy and gurarantee the uniform weld quality.

  • PDF

A Study on Development of System for Prediction of the Optimal Bead Width on Robotic GMA Welding (로봇 GMA용접에 최적의 비드폭 예측 시스템 개발에 관한 연구)

  • 김일수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-63
    • /
    • 1998
  • An adaptive control in the robotic GMA welding is employed to monitor information about weld characteristics and process parameters as well as to modify those parameters to hold weld quality within acceptable limits. Typical characteristics are the bead geometry, composition, microstructure, appearance, and process parameters which govern the quality of the final weld. The main objectives of this thesis are to realize the mapping characteristics of bead width through learning. After learning, the neural estimation can estimate the bead width desired form the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead width with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Design and Implementation of Multi-media Title for The Similar Figure Learning (닮은도형 학습을 위한 멀티미디어 차이를 설계 및 구현)

  • 송선일;최지영;인치호
    • The Journal of Information Technology
    • /
    • v.3 no.3
    • /
    • pp.1-9
    • /
    • 2000
  • In this paper, we propose the design and implementation of Multi-media Title for the similar figure learning. The algebra problems of mathematics are usually solved by algorithm, but the diagram problems of geometry have various solution methods. This made us educate the students by memorizing the principle and property of diagram. In this paper, we applied the courseware to the students and analyzed the result. Therefore we could notice the possibilities, "f we teach students by using the courseware, we can improve their learning achievement."

  • PDF

A Case Study of Geometry Teaching and Learning based on Waldorf Education Methods in a Korean Alternative School (발도르프 수학교육 방법을 적용한 우리나라 대안학교 기하단원 교수·학습에 관한 사례연구)

  • Song, Man Ho;Kim, Young-Ok
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.197-222
    • /
    • 2014
  • The purpose of this research is to find out if it is possible to apply the Waldorf School's mathematics education method to Korean alternative schools which are run under the national curriculum. To achieve this, the researcher conducted class on geometry for three weeks with ten 7th graders(four girls and six boys) from Apple Tree Waldorf alternative school in Busan, which has adopted Valdorf education courses. For the first two weeks, the class was about 'fundamental geometrical construction', and then it was evaluated. On the third week, the lesson was on plane figures, followed by a test with 9 plane figure questions that are based on general middle school mathematics curriculum. The result shows that most of the students understood 'fundamental geometrical construction'. When it comes to the test on 'plane figures', seven students got 8 out of 9 right, two students got 6 out of 9 right, and one of them had difficulty solving the questions. According to the results of this research, it is thought that there will be no problem for students to understand mathematical concept even if the Waldorf School's mathematics education method is applied to Korean alternative schools. Also, the Waldorf School's mathematics education method is considered to be a good teaching model for the Korean mathematics curriculum which places emphasis on 'mathematical creativity' in regard to the curriculum and contents.

An Analysis of the Characteristics of Definitions and Exploration the Levels of Definitions in Mathematics Textbooks - In the Area of Geometry - (수학교과서에서 사용하는 정의의 특성 분석과 수준 탐색 - 기하 영역을 중심으로 -)

  • Cho, Young-Mi
    • School Mathematics
    • /
    • v.4 no.1
    • /
    • pp.15-27
    • /
    • 2002
  • The purpose of this thesis is, through analysing the characteristics of the definitions in Korean school mathematics textbooks, to explore the levels of them. Definitions use din academic mathematics are rigorous. But they should be transformed into various types, which are presented in school mathematics textbooks, with didactical purposes. In this thesis we investigated such types of transformation. With the result of this investigation we tried to identify the levels of the definitions in school mathematics textbooks. We tried to construct, with consideration about methods of definition, frame for analysing the types of the definitions in school mathematics. Methods of definition are classified as connotative method, denotative method, and synonymous method. Especially we identified that connotative method contains logical definition, genetic definition, relational definition, operational definition, and axiomatic definition. With these analyses we made a frame for investigating the characteristics of the definitions in school mathematics textbooks. With this frame we identified concrete types of transformations of methods of definition. We tried to analyse this result with van Hieles' theory about let·els of geometry learning and the mathematical language levels described by Freudenthal, and identify the levels of definitions in school mathematics. We showed the levels of definitions in the geometry area of the Korean school mathematics.

  • PDF

Research On Technical Writing Educational Methods Based On Complex Learning Systems (학습복잡계 기반의 공학적 글쓰기 교수 방법 연구)

  • Kim, Hae-Kyung;Kim, Cha-Jong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.7
    • /
    • pp.1521-1528
    • /
    • 2010
  • This paper examines technical writing and teaching methods based on the perspectives of the complex learning system theory. So, the paper first discusses the constituent elements and characteristics of the complex learning system theory and continues to examine the potential of applying the complex learning system theory to new teaching methods. As a result, not only did the research expand the approach methods of providing technical writing education but also confirmed the potential of actual implementation. Such results will provide a leeway to start applying new teaching methods for technical writing education. Furthermore, the paper proposes more detailed case studies related to this topic as well as development of this research to produce textbooks and other higher level researches.

A Study of Manipulative Activities Using Cube in Elementary School Geometry (초등학교 기하에서 큐브를 활용한 조작 활동에 관한 연구)

  • Shim, Sang-Kil
    • The Mathematical Education
    • /
    • v.44 no.1 s.108
    • /
    • pp.143-152
    • /
    • 2005
  • The purpose of this study is to investigate responses or phenomena shown by the students in the process of manipulative activities in order to use manipulatives effectively in the elementary school geometry classes. The fualitative study used for this research analyzed phenomena in the process of learning programs offered to students. The five participants of this research were selected from the third graders at C Elementary School in Seoul city. The researcher recorded all the activities of students, watching them thoroughly and extracting significant statements from each description. These statements were formulated by their meanings, and then those meanings were analyzed into classified themes. The results through this research are as follows: First, previous activities affected later activities positively in the conjoining case, but negatively in the disjoining case and hence it required adventurous thinking. Second, students tried various attempts for solving given problems.

  • PDF

DEVELOPMENT OF PROBLEM-SPECIFIC GRID GENERATION PROGRAM FOR EDUCATIONAL PURPOSE (문제-지향적 교육용 격자 생성 프로그램의 개발)

  • Ryu, G.M.;Kim, Byoungsoo
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.26-31
    • /
    • 2015
  • A grid generation program for specific problems is introduced. The program allows users to easily generate grid system for specific geometry such as an airfoil, cylinder, wedge, flat plate, and nozzle. Generating grid system for those problems can be proceeded with minimum user inputs such as geometry-defining parameters and grid-defining parameters. By using this program learning stage for preprocessing of CFD application can be efficiently shorten and novice students can learn and acquire experience by trying out grid generation and CFD solution by themselves.