• Title/Summary/Keyword: geometry control

Search Result 766, Processing Time 0.027 seconds

ALVEOLAR BONE CHANGES AROUND THE NATURAL TEETH OPPOSING THE POSTERIOR IMPLANTS IN MANDIBLE (임플랜트로 수복된 하악 구치부에 대합되는 자연치 주변의 골변화)

  • Jung, Won-Mo;Kim, Dae-Gon;Yi, Yang-Jin;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.263-273
    • /
    • 2007
  • Statement of problem: Alteration of tooth function is assumed to be changed by stress/strain on the adjacent alveolar bone, producing changes in morphology similar to those described for other load-bearing bones. When teeth are removed, opposing teeth will not be functioned. When edentulous area is restored by implant prostheses, opposing teeth will be received physiologic mechanical stimuli. Purpose: The aim of this study was to evaluate the bone changes around the teeth opposing implant restoration installed mandibular posterior area. Material and method: Eight patients who had mandibular posterior edentulous area were treated with implants. Radiographs of the opposing teeth were taken at implant prostheses delivery(baseline), 3 months, and 6 months later. Customized film holding device was fabricated to standardize the projection geometry for serial radiographs of opposing teeth. Direct digital image was obtained. Gray values of region of interest at each digital image were measured and compared according to time lapse. Repeated measured analysis of variance and post-hoc Scheffe's test were performed at the 95% significance level. Results: Alveolar bone changes around the natural teeth opposing the posterior implant in mandible showed statistically significant difference compared to control group(P<0.05). And gray values of alveolar bone around the teeth opposing implants were increased. There were no statistically significant differences of alveolar bone changes between crestal group and middle group and between mesial group and distal group according to time lapse(P>0.05). There were no statistically significant differences of alveolar bone changes among mesial-crestal group, mesial-middle group, distal-crestal group, distal-middle group, and control group(P>0.05). Conclusion: Alveolar bone around the natural teeth opposing the implant prosthesis showed gradual bony apposition.

CFD Analysis on the Flow Uniformity of a $CO_2$ Enrichment System (CFD를 이용한 온실 $CO_2$ 시비 시스템의 유량 균일성 해석)

  • Yim, Kyungjin;Kim, Hongjip;Lee, Sangmin;Park, Kyoung-Sub
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.123-130
    • /
    • 2013
  • $CO_2$ enrichment systems have been recently used to shorten the growth period of plants and the improvement of harvest and its quality. To accomplish these goals, manifold should be designed to supply the same amount of $CO_2$. In this study, CFD approach has been used to understand the effects of geometric parameters, such as tube and hole diameters. An optimized geometry has been derived through pipe and tube part, respectively. As a result, the deviation of flow rate less than 0.1 g/s was expected at all holes of the $CO_2$ enrichment system.

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.

Fabrication of Carbon Microneedle Arrays with High Aspect Ratios and The Control of Hydrophobicity of These Arrays for Bio-Applications (고종횡비 탄소 마이크로니들 어레이의 제조 및 생체응용을 위한 소수성 표면의 제어)

  • Lee, Jung-A;Lee, Seok-Woo;Lee, Seung-Seob;Park, Se-Il;Lee, Kwang-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1721-1725
    • /
    • 2010
  • This paper reports the fabrication of geometry-controlled carbon microneedles by a backside exposure method and pyrolysis. The SU-8 microneedles are a polymer precursor in a carbonization process, which geometries such as base diameter, spacing, and aspect ratio can be controlled in a photolithography step. Using this fabrication method, highly reproducible carbon microneedles, which have high aspect ratios of more than 10 and very sharp nanotips, can be realized. The quartz surface with carbon microneedles becomes very hydrophilic and its wettability is adjusted by carrying out the silane treatment. In the carbon microneedle array ($3\;{\mu}m{\times}3\;{\mu}m$), the contact angle is extremly enhanced (${\sim}180^{\circ}$); this will be advantageous in developing low-drag microfluidics and labs-on-a-chip as well as in other bio-applications.

Geo-Morphological Study of Sand Dune for Railway Project in UAE (UAE 내 철도프로젝트 수행을 위한 사막 사구의 지형학적 특성 연구)

  • Moon, Joon-Shik;Kim, Jae-Young;Lee, Seung-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.9
    • /
    • pp.17-22
    • /
    • 2012
  • Wind blown sand is expected to disrupt the operation of the railway as the presented railway project in this paper consists of large earthworks in extreme topography of the mega dune fields. For successful railway construction in sand dune area, effective mitigation measure is the most important factor to protect the track from wind blown sand. The effective mitigation measure requires an integrated consideration of the earthworks geometry and the direct control measures such as fence system. Basically there's no perfect measure protecting railway track from wind blown sand, and it would be more economical and effective to develop robust, deliberate maintenance program for track and direct control measure on the basis of geo-morphological study. The purpose of this study is to identify the large scale geo-morphological terrains and specific sand dune morphology in the project area in UAE and estimate the direction and migration rate for sand dunes with the local variations in prevailing wind directions by undertaking literature review, and aerial photographs, satellite images, and ground studies.

The Effects of Control Takeover Request Modality of Automated Vehicle and Road Type on Driver's Takeover Time and Mental Workload (자율주행 차량의 제어권 인수요구 정보양상과 도로 형태에 따른 운전자의 제어권 인수시간과 정신적 작업부하 차이)

  • Nam-Kyung Yun;Jaesik Lee
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.51-70
    • /
    • 2023
  • This study employed driving simulation to examine how takeover request (TOR) information modalities (visual, auditory, and visual + auditory) in Level-3 automated vehicles, and road types (straight and curved) influence the driver's control takeover time (TOT) and mental workload, assessed through subjective workload and heart rate variations. The findings reveal several key points. First, visual TOR resulted in the quickest TOT, while auditory TOR led to the longest. Second, TOT was considerably slower on curved roads compared to straight roads, with the greatest difference observed under the auditory TOR condition. Third, the auditory TOR condition generally induced lower subjective workload and heart rate variability than the visual or visual + auditory conditions. Finally, significant heart rate changes were predominantly observed in curved road conditions. These outcomes indicate that TOT and mental workload levels in drivers are influenced by both the TOR modality and road geometry. Notably, a faster TOT is associated with increased mental workload.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

3D Seismic Data Interpretation of the Gorse II Area, Block VI-1, Offshore Southeast Korea (한국 대륙붕 VI-1광구 고래 II지역의 3D탄성파 자료해석)

  • Shin Kook Sun;Yu Kang Min;Kim Kun Deuk;Um Chang Lyeol
    • The Korean Journal of Petroleum Geology
    • /
    • v.5 no.1_2 s.6
    • /
    • pp.27-35
    • /
    • 1997
  • The Gorae II area is located in the southwestern margin of the Ulleung Basin, East Sea and corresponds to the Ulleung Trough. The survey of 3D seismic data in this area was performed to delineate the structural leads confirmed by the previous 2D seismic data. As a part of 3D interpretation, basement related structural movements and their relationship with the stratigraphy were studied. The study shows that eight sequences were identified which are genetically related to the tectonics and sediment supply in this area. The geologic structures characterizing the study area consist of : (1) block faults developed in the early stage of basin opening, (2) late Miocene thrusts, and (3) Pliocene wrench faults. The eight sequences consist of pre-rift (acoustic basement), syn-rift (Sequence $A_1, A_2$), post-rift (Sequence $B_1{\~}B_3$), syn-compressional sequence (Sequence C), and post-compressional sequence(Sequence D) from oldest to youngest. The time structure and isochron maps were constructed for each sequence and also used in seismic facies analysis and interpretation of sedimentary environment. The interpretation results reveal that the relative sea level changes caused by several stages of tectonic movements and sediment supply control the stratal and structural geometry of Ulleung basin.

  • PDF

The Evaluation of an additional Weight Shoe's Function developed for the Improvement of Aerobic Capacity (유산소 운동능력 향상을 위한 중량물 부가 신발의 기능성 평가)

  • Kwak, Chang-Soo;Kim, Hee-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.67-82
    • /
    • 2004
  • The purpose of this study was to evaluate the function and the safety of an additional weight shoe developed for the improvement of aerobic capacity, and to improve some problems found by subject's test for an additional weight shoe. The subjects employed for this study were 10 college students. 4 video cameras, AMTI force platform and Pedar insole pressure distribution measurement device were used to analyze foot motions. The results of the study were as follows: 1 The initial achilles tendon angle and initial rearfoot pronation angle of an additional weight shoe during walking were 183.7 deg and 2.33 deg, respectively, and smaller than a barefoot condition. Maximum achilles tendon angle and the angular displacement of achilles tendon angle were 185.35 deg and 4.21 deg respectively, and smaller than barefoot condition. Thus rearfoot stability variables were within the permission value for safety. 2. Maximal anterior posterior ground reaction force of additional weight shoe was appeared to be 1.01-1.2 B.W., and was bigger than a barefoot condition. The time to MAPGRF of an additional weight shoe was longer than a barefoot condition. Maximal vertical ground reaction force of additional weight shoe was appeared to be 2.3-2.7 B.W., and was bigger than a barefoot condition in propulsive force region. But A barefoot condition was bigger in braking force region. The time to MVGRF of an additional weight shoe was longer than a barefoot condition. 3. Regional peak pressure was bigger in medial region than in lateral region in contrast to conventional running shoes. The instant of regional peak pressure was M1-M2-M7-M4-M6-M5 -M3, and differed form conventional running shoes. Regional Impulse was shown to be abnormal patterns. There were no evidences that an additional weight shoe would have function and safety problems through the analysis of rearfoot control and ground reaction force during walking. However, There appeared to have small problem in pressure distribution. It was considered that it would be possible to redesign the inner geometry. This study could not find out safety on human body and exercise effects because of short term research period. Therefore long term study on subject's test would be necessary in the future study.

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.