• Title/Summary/Keyword: geometry control

Search Result 766, Processing Time 0.043 seconds

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

A Study on the Dynamic Component of Cutting Force in Turning[1] -Recognition of Chip Flow by the Dynamic Cutting Force Component- (선삭가공에 있어서 절삭저항의 동적성분에 관한 연구 [I] -동적성분에 의한 Chip배출상태의 인식-)

  • Chung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.84-93
    • /
    • 1988
  • The on-line detection of the chip flow is one of the most important technologies in com- pletly automatic operation of machine tool, such as FMS and Unmanned Factories. This problem has been studied by many researchers, however, it is not solved as yet. For the recognition of chip flow in this study, the dynamic cutting force components due to the chip breaking were measured by dynamometer of piezo-electric type, and the frequency components of cutting force were also analyzed. From the measured results, the effect of cutting conditions and tool geometry on the dynamic cutting force component and chip formation were investigated in addition to the relationships between frequency of chip breaking (fB) and side serrated crack (fC) of chip. As a result, the following conclusions were obtaianed. 1) The chip formations have a large effect on the dynamic cutting force components. When chip breaking takes place, the dynamic cutting force component greatly increases, and the peridoic components appear, which correspond to maximum peak- frequency. 2) The crater wear of tool has a good effect on the chip control causing the chiup to be formed as upward-curl shape. In this case, the dymamic cutting force component greatly increases also 3) fB and fC of chip are closely corelated, and fC of chips has a large effect on the change of the situation of chip flow and dynamic cutting force component. 4) Under wide cutting conditions, the limit value (1.0 kgf) of dynamic cutting force component exists between the broken and continuous chips. Accordingly, this value is suitable for recognition of chip flow in on-line control of the cutting process.

  • PDF

Adaptive Zoom-based Gaze Tracking for Enhanced Accuracy and Precision (정확도 및 정밀도 향상을 위한 적응형 확대 기반의 시선 추적 기법)

  • Song, Hyunjoo;Jo, Jaemin;Kim, Bohyoung;Seo, Jinwook
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.9
    • /
    • pp.610-615
    • /
    • 2015
  • The accuracy and precision of video-based remote gaze trackers is affected by numerous factors (e.g. the head movement of the participant). However, it is challenging to control all factors that have an influence, and doing so (e.g., using a chin-rest to control geometry) could lead to losing the benefit of using gaze trackers, i.e., the ecological validity of their unobtrusive nature. We propose an adaptive zoom-based gaze tracking technique, ZoomTrack that addresses this problem by improving the resolution of the gaze tracking results. Our approach magnifies a region-of-interest (ROI) and retrieves gaze points at a higher resolution under two different zooming modes: only when the gaze reaches the ROI (temporary) or whenever a participant stares at the stimuli (omnipresent). We compared these against the base case without magnification in a user study. The results are then used to summarize the advantages and limitations of our technique.

A Study on Effect of Flex Additions for Selecting the Process Parameters in GMA Welding processes (GMA 용접공정에서 공정변수 선정을 위한 플럭스 첨가에 관한 연구)

  • Kim, In-Ju;Kim, Jun-Ki
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • As the quality of a weld joint is strongly influenced by process parameters the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. In this study, prepared by ${\Phi}1.6mm$ GMA welding of metal wire nose Advice jowelui 350A 600A grade level inverter welder and DAIHEN SCR's were carried out using welding. Welding conditions were 5.5m/min wire feed rate the welding current is rapidly transmit approximately 260A, welding voltage was about 30V. CTWD a 22mm, shielding gas was Ar 20L/min and the welding speed was a 240mm/min. Using data collected during welding equipment welding current and welding voltage waveform was analyzed by measuring the volume of the transition mode. Addition of $CaCO_3$ as a loss of the spread of the weld bead dilution rate decreased, suggesting that, GMA in the overlay welding bead shape control, dilution control and may be used as a welding flux is considered. Stabilizing effect of the arc by the Ca-containing $CaF_2$, $CaCO_3$, $CaMg(CO_3)_2$, respectively, welding flux 0.1wt.% added GMA welding and weld overlay were evaluated with dilution, $CaF_2$, and $CaMg(CO_3)_2$ added to the dilution of Seemed to increase.

The Development of Structural Test Facility for the Strength Assessment of CFRP Marine Leisure Boat (탄소섬유강화플라스틱 재료 레저선박의 구조강도 평가를 위한 시험설비 구축과 운용에 관한 연구)

  • Jeong, Han Koo;Zhang, Yang;Yum, Deuk Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.312-320
    • /
    • 2017
  • This paper deals with the development of structural test facility for the strength assessment of marine leisure boat built from carbon fiber reinforced plastics (CFRP) materials. The structural test facility consists of test jig, load application and control system, and data acquisition system. Test jig, and load application and control system are designed to accommodate various size and short span to depth ratios of single skin, top-hat stiffened and sandwich constructions in plated structural format such as square and rectangular shapes. A lateral pressure load, typical and important applied load condition to the plates of the hull structure for marine leisure boat, is simulated by employing a number of hydraulic cylinders operated automatically and manually. To examine and operate the structural test facility, five carbon/epoxy based FRP square plates having the test section area of $1m^2$, which are part of CFRP marine leisure boat hull, are prepared and they are subjected to monotonically increasing lateral pressure loads. In the test preparation, considering the symmetry of the plates geometry, various strain gauges and linear variable displacement transformer are used in conjunction with data acquisition system utilizing LabVIEW. From the test observation, the responses of the CFRP hull structure of marine leisure boat are understood by obtaining load to deflection and strain to load curves.

Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke (자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석)

  • Seong, S.G.;Kim, K.H.;Lee, Y.S.;Lee, S.Y.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.

Isogeometric Shape Design Optimization of Structures Subjected to Design-dependent Loads (설계 의존형 하중 조건을 갖는 구조물의 아이소-지오메트릭 형상 최적설계)

  • Yoon, Min-Ho;Koo, Bon-Yong;Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • In this paper, based on an isogeometric approach, we have developed a shape design optimization method for plane elasticity problems subjected to design-dependent loads. The conventional shape optimization using the finite element method has some difficulties in the parameterization of geometry. In an isogeometric analysis, however, the geometric properties are already embedded in the B-spline basis functions and control points so that it has potential capability to overcome the aforementioned difficulties. The solution space for the response analysis can be represented in terms of the same NURBS basis functions to represent the geometry, which yields a precise analysis model that exactly represents the normal and curvature depending on the applied loads. A continuum-based isogeometric adjoint sensitivity is extensively derived for the plane elasticity problems under the design-dependent loads. Through some numerical examples, the developed isogeometric sensitivity analysis method is verified to show excellent agreement with finite difference sensitivity.

Similitude Law on Material Non-linearity for Seismic Performance Evaluation of RC Columns (RC기둥의 내진성능평가를 위한 재료비선형 상사법칙)

  • Lee, Do-Keun;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.409-417
    • /
    • 2010
  • This paper discusses a series of experiments including material improvement in order to ensure quality of grouting for the post-tensioned structure. In prestressed concrete, grouting refers to the construction procedure of filling empty space of duct enclosing with strands using cementitious material, To date, adequate quality control of the grouting has not been established in Korea because the relationship between the grouting and durability of post-tensioned structure is not well-recognized. The Korean standard does not consider the important material characteristic, wick effect, which is caused by strands in the ducts and current standard testing method unlikely quantify reasonable material segregation. As a result, the grout material, which meets the current material standards, may exhibit excessive bleeding water or shrinkage during construction. In this study, international codes and standards related to grouting were surveyed. The ratio of constituents and novel admixtures were suggested to meet equivalently with these standards. Performance of this enhanced grout was compared to common domestic grout using the international standard testing method. A series of mock-up specimens considering geometry of PC beam was constructed and grout flow pattern was observed as the grout was injected. It was observed that the grouting performance was highly influenced by material properties and filling characteristic can be varied depending on geometry of ducts.

A Numerical Study on the Geometry Optimization of Internal Flow Passage in the Common-rail Diesel Injector for Improving Injection Performance (커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jeong, Soojin;Lee, Sangin;Kim, Taehun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2014
  • The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).