• Title/Summary/Keyword: geometric task

Search Result 107, Processing Time 0.026 seconds

A Consideration of the Optimal Thinning Algorithm for Cadastral Map Vectorizing (지적도 벡터라이징을 위한 최적 세선화 알고리즘에 대한 고찰)

  • Won, Nam-Sik;Kim, Kwon-Yang
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.54-62
    • /
    • 1999
  • Vectorizing for input processing of map is the most time and cost consuming task, and the quality of vector data depends on that processing result. Therefore, it is an important task to develop a good vectorizing system in the GIS. Thinning algorithm is the most important technology for deciding the quality of vector data in the vectorizing system. In this paper, as a suitable algorithm for map vectorizing we considered several algorithms that preserve topological and geometric characteristics, and have no distortion of the contour line. As a results, we implemented WPTA4 and well known thinning algorithm, and compared WPTA4 execution results with the others.

  • PDF

Singularity Avoidance Algorithms for Controlling Robot Manipulator: A Comparative Study (로봇 메니퓰레이터의 제어를 위한 특이점 회피 알고리즘의 비교 연구)

  • Kim, Sanghyun;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.1
    • /
    • pp.42-54
    • /
    • 2017
  • Using an inverse of the geometric Jacobian matrix is one of the most popular ways to control robot manipulators, because the Jacobian matrix contains the relationship between joint space velocities and operational space velocities. However, the control algorithm based on Jacobian matrix has algorithmic singularities: The robot manipulator becomes unstable when the Jacobian matrix loses rank. To solve this problem, various methods such as damped and filtered inverse have been proposed, but comparative studies to evaluate the performance of these algorithms are insufficient. Thus, this paper deals with a comparative analysis of six representative singularity avoidance algorithms: Damped Pseudo Inverse, Error Damped Pseudo Inverse, Scaled Jacobian Transpose, Selectively Damped Inverse, Filtered Inverse, and Task Transition Method. Especially, these algorithms are verified through computer simulations with a virtual model of a humanoid robot, THORMANG, in order to evaluate tracking error, computational time, and multiple task performance. With the experimental results, this paper contains a deep discussion about the effectiveness and limitations of each algorithm.

A Research on Airborne Nicotine Exposure during Harvest and Weaving Tasks in Tobacco Farms (담배농가의 수확, 엮기작업 중 공기 중 니코틴 노출에 관한 연구)

  • Kim, Hyo Cher;Lee, Kyung Suk;Chae, Hye Seon;Park, Yoon Seok;Min, Kyung Doo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.217-223
    • /
    • 2012
  • Objectives: This study was conducted to evaluate personal and area exposure of airborne nicotine during harvest and weaving tasks in tobacco farms. Methods: Nicotine was measured with NIOSH method 2551 and Passive sampler which was validated in previous papers for area and personal sampling. Results: The average (geometric mean) concentrations of nicotine with two different tasks in personal sample were 6.5 ${\mu}g/m^3$ (harvest), 32.6 ${\mu}g/m^3$ (weaving) and in area sample were 0.8 ${\mu}g/m^3$ (harvest), 57.2 ${\mu}g/m^3$ (weaving). There was significant difference in area sample between harvest and weaving task (p=0.000). Also, there was significant difference with personal sample (p=0.000). Conclusions: It was found that weaving task should be considered to be the first priority for reducing nicotine exposure.

A New Approach to CAD/CAM Systems Data Exchange Using Plug-in Technology

  • Chernopyatov Y.A.;Chung W.j.;Lee C.M.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.8-13
    • /
    • 2005
  • Interoperability has been the problem of CAD/CAM systems. Starting from 1980's, national and international organizations have addressed the issue through development and release of standards for the exchange of geometric and nongeometric design data. To CAD/CAM vendors, the task of interpreting and implementing these standards falls into their products. This task is a balancing action between users' needs, available development resources, and the technical specifications of standards. This paper explores an area of CAD/CAM systems development, particularly the implementation of the effective exchange files translators'. A new approach is introduced, which proposes to enclose all the translation operations concerning each exchange format to a separate DLL, thus making a 'plug-in.' Then, this plug-in could be used together with the CAD/CAM system or with specialized translation software. This approach allows to create new translators rapidly and to gain the reliable, high-efficiency, and reusable program code. The second part of the paper concerns the possible problems of translators' development. These difficulties often come from the exchange standards' misunderstanding or ambiguity in standards. All examples come from the authors' practice experiences of dealing with CAD/CAM systems.

An Analysis of Proportional Reasoning of Elementary School Students - Focused on Sixth Graders - (초등학생들의 비례 추론 전략 분석 -6학년을 중심으로-)

  • Jung, Yoo Kyung;Chong, Yeong Ok
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.4
    • /
    • pp.457-484
    • /
    • 2015
  • This study aims to investigate an approach to teach proportional reasoning in elementary mathematics class by analyzing the proportional strategies the students use to solve the proportional reasoning tasks and their percentages of correct answers. For this research 174 sixth graders are examined. The instrument test consists of various questions types in reference to the previous study; the proportional reasoning tasks are divided into algebraic-geometric, quantitative-qualitative and missing value-comparisons tasks. Comparing the percentages of correct answers according to the task types, the algebraic tasks are higher than the geometric tasks, quantitative tasks are higher than the qualitative tasks, and missing value tasks are higher than the comparisons tasks. As to the strategies that students employed, the percentage of using the informal strategy such as factor strategy and unit rate strategy is relatively higher than that of using the formal strategy, even after learning the cross product strategy. As an insightful approach for teaching proportional reasoning, based on the study results, it is suggested to teach the informal strategy explicitly instead of the informal strategy, reinforce the qualitative reasoning while combining the qualitative with the quantitative reasoning, and balance the various task types in the mathematics classroom.

Recognition and Modeling of 3D Environment based on Local Invariant Features (지역적 불변특징 기반의 3차원 환경인식 및 모델링)

  • Jang, Dae-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2006
  • This paper presents a novel approach to real-time recognition of 3D environment and objects for various applications such as intelligent robots, intelligent vehicles, intelligent buildings,..etc. First, we establish the three fundamental principles that humans use for recognizing and interacting with the environment. These principles have led to the development of an integrated approach to real-time 3D recognition and modeling, as follows: 1) It starts with a rapid but approximate characterization of the geometric configuration of workspace by identifying global plane features. 2) It quickly recognizes known objects in environment and replaces them by their models in database based on 3D registration. 3) It models the geometric details the geometric details on the fly adaptively to the need of the given task based on a multi-resolution octree representation. SIFT features with their 3D position data, referred to here as stereo-sis SIFT, are used extensively, together with point clouds, for fast extraction of global plane features, for fast recognition of objects, for fast registration of scenes, as well as for overcoming incomplete and noisy nature of point clouds.

  • PDF

Genetic algorithm-based geometric and reinforcement limits for cost effective design of RC cantilever retaining walls

  • Mansoor Shakeel;Rizwan Azam;Muhammad R. Riaz
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.337-348
    • /
    • 2023
  • The optimization of reinforced concrete (RC) cantilever retaining walls is a complex problem and requires the use of advanced techniques like metaheuristic algorithms. For this purpose, an optimization model must first be developed, which involves mathematical complications, multidisciplinary knowledge, and programming skills. This task has proven to be too arduous and has halted the mainstream acceptance of optimization. Therefore, it is necessary to unravel the complications of optimization into an easily applicable form. Currently, the most commonly used method for designing retaining walls is by following the proportioning limits provided by the ACI handbook. However, these limits, derived manually, are not verified by any optimization technique. There is a need to validate or modify these limits, using optimization algorithms to consider them as optimal limits. Therefore, this study aims to propose updated proportioning limits for the economical design of a RC cantilever retaining wall through a comprehensive parametric investigation using the genetic algorithm (GA). Multiple simulations are run to examine various design parameters, and trends are drawn to determine effective ranges. The optimal limits are derived for 5 geometric and 3 reinforcement variables and validated by comparison with their predecessor, ACI's preliminary proportioning limits. The results indicate close proximity between the optimized and code-provided ranges; however, the use of optimal limits can lead to additional cost optimization. Modifications to achieve further optimization are also discussed. Besides the geometric variables, other design parameters not covered by the ACI building code, like reinforcement ratios, bar diameters, and material strengths, and their effects on cost optimization, are also discussed. The findings of this investigation can be used by experienced engineers to refine their designs, without delving into the complexities of optimization.

Students' Problem Solving Based on their Construction of Image about Problem Contexts (문제맥락에 대한 이미지가 문제해결에 미치는 영향)

  • Koo, Dae Hwa;Shin, Jaehong
    • Journal of the Korean School Mathematics Society
    • /
    • v.23 no.1
    • /
    • pp.129-158
    • /
    • 2020
  • In this study, we presented two geometric tasks to three 11th grade students to identify the characteristics of the images that the students had at the beginning of problem-solving in the problem situations and investigated how their images changed during problem-solving and effected their problem-solving behaviors. In the first task, student A had a static image (type 1) at the beginning of his problem-solving process, but later developed into a dynamic image of type 3 and recognized the invariant relationship between the quantities in the problem situation. Student B and student C were observed as type 3 students throughout their problem-solving process. No differences were found in student B's and student C's images of the problem context in the first task, but apparent differences appeared in the second task. In the second task, both student B and student C demonstrated a dynamic image of the problem context. However, student B did not recognize the invariant relationship between the related quantities. In contrast, student C constructed a robust quantitative structure, which seemed to support him to perceive the invariant relationship. The results of this study also show that the success of solving the task 1 was determined by whether the students had reached the level of theoretical generalization with a dynamic image of the related quantities in the problem situation. In the case of task 2, the level of covariational reasoning with the two varying quantities in the problem situation was brought forth differences between the two students.

A Comparison of Mathematically Gifted Students' Solution Strategies of Generalizing Geometric Patterns (초등학교 4,5,6학년 영재학급 학생의 패턴 일반화를 위한 해결 전략 비교)

  • Choi, Byoung Hoon;Pang, Jeong Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.22 no.4
    • /
    • pp.619-636
    • /
    • 2012
  • The main purpose of this study was to explore the process of generalization generated by mathematically gifted students. Specifically, this study probed how fourth, fifth, and sixth graders might generalize geometric patterns and represent such generalization. The subjects of this study were a total of 30 students from gifted classes of one elementary school in Korea. The results of this study showed that on the question of the launch stage, students used a lot of recursive strategies that built mainly on a few specific numbers in the given pattern in order to decide the number of successive differences. On the question of the towards a working generalization stage, however, upper graders tend to use a contextual strategy of looking for a pattern or making an equation based on the given information. The more difficult task, more students used recursive strategies or concrete strategies such as drawing or skip-counting. On the question of the towards an explicit generalization stage, students tended to describe patterns linguistically. However, upper graders used more frequently algebraic representations (symbols or formulas) than lower graders did. This tendency was consistent with regard to the question of the towards a justification stage. This result implies that mathematically gifted students use similar strategies in the process of generalizing a geometric pattern but upper graders prefer to use algebraic representations to demonstrate their thinking process more concisely. As this study examines the strategies students use to generalize a geometric pattern, it can provoke discussion on what kinds of prompts may be useful to promote a generalization ability of gifted students and what sorts of teaching strategies are possible to move from linguistic representations to algebraic representations.

  • PDF

Effective Multi-Modal Feature Fusion for 3D Semantic Segmentation with Multi-View Images (멀티-뷰 영상들을 활용하는 3차원 의미적 분할을 위한 효과적인 멀티-모달 특징 융합)

  • Hye-Lim Bae;Incheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.505-518
    • /
    • 2023
  • 3D point cloud semantic segmentation is a computer vision task that involves dividing the point cloud into different objects and regions by predicting the class label of each point. Existing 3D semantic segmentation models have some limitations in performing sufficient fusion of multi-modal features while ensuring both characteristics of 2D visual features extracted from RGB images and 3D geometric features extracted from point cloud. Therefore, in this paper, we propose MMCA-Net, a novel 3D semantic segmentation model using 2D-3D multi-modal features. The proposed model effectively fuses two heterogeneous 2D visual features and 3D geometric features by using an intermediate fusion strategy and a multi-modal cross attention-based fusion operation. Also, the proposed model extracts context-rich 3D geometric features from input point cloud consisting of irregularly distributed points by adopting PTv2 as 3D geometric encoder. In this paper, we conducted both quantitative and qualitative experiments with the benchmark dataset, ScanNetv2 in order to analyze the performance of the proposed model. In terms of the metric mIoU, the proposed model showed a 9.2% performance improvement over the PTv2 model using only 3D geometric features, and a 12.12% performance improvement over the MVPNet model using 2D-3D multi-modal features. As a result, we proved the effectiveness and usefulness of the proposed model.