• 제목/요약/키워드: geometric parameters

검색결과 1,150건 처리시간 0.022초

잠제의 형상 변화에 따른 반사파 및 투과파의 거동특성 (Behaviors of Reflected and Transmitted Waves for Geometric Change of Submerged Breakwater)

  • 이철응;오원택
    • 산업기술연구
    • /
    • 제20권A호
    • /
    • pp.139-148
    • /
    • 2000
  • A numerical model is represented to calculate the wave fields such as the reflected waves, the transmitted waves, and depth averaged velocities over submerged breakwaters for the normally incident wave trains of nonlinear monochromatic wave. The numerical model is correctly formulated by using both the finite amplitude shallow water equations with the effects of bottom friction and the explicit dissipative Lax-Wendroff finite difference scheme, also satisfactorily verified by comparison with the other results. The behaviors of reflected and transmitted waves with respect to geometric parameters of submerged breakwater such as the slope, crest depth, and crest width are numerically analyzed in this study. In particular, the reflection and transmission coefficients are quantitatively calculated as the function of geometric parameter of submerged breakwater. It is found that the crest depth among parameters related to practical design may be the most important parameter in designing the submerged breakwater. Therefore, the effective and economic performances of submerged breakwater should be depended on the determination of optimal crest depth.

  • PDF

대곡면 후곡판 성형을 위한 블랭크 지지구조의 적합성 연구 (A Compatibility Study on Blank Support Structure for Large and Curved Thick Plate Forming)

  • 임미래;곽봉석;강범수;구태완
    • 소성∙가공
    • /
    • 제28권6호
    • /
    • pp.335-346
    • /
    • 2019
  • Thick plate forming is presented to manufacture a large and curved member of steam turbine diaphragm. Due to three-dimensional asymmetry of target geometry, it is hard to consistently keep the blank position in die cavity between forming punch and die. In order to relieve the position instability of the blank during the thick plate forming, a blank support structure is proposed to be composed of guide pins and linear bearing, and blank guide arm enlarged from both longitudinal ends of the thick blank. In this study, parametric investigations with regard to the geometric position and width of the blank guide arm are carried out. As main geometric parameters, 2 positions such as maximum curvature region and minimum one on a curved cross-section profile of the target shape are selected, and 14 widths of the blank guide arm are considered. Using 28 variable combinations, three-dimensional numerical simulations are performed to predict the appropriate range of the process parameters. The compatibility and validity of the blank support structure with the blank guide arm for the thick plate forming is verified through the thick plate forming experiments.

그래프 모형을 이용한 지수분포 모수들의 기하평균 비교에 관한 연구 (On Multiple Comparison of Geometric Means of Exponential Parameters via Graphical Model)

  • 김대황;김혜중
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.447-460
    • /
    • 2006
  • 본 연구에서는 확률모형의 모수로부터 얻어지는 여러 형태의 함수간의 크기를 다중 비교 하는 방법을 제안하고자 한다. 이 방법은 비교대상인 모수 함수 간의 선호확률을 베이지안 방법으로 추정하고, 이들로부터 얻어지는 선호행렬을 이용한 새로운 다중비교법이다. 이러한 방법의 제안에 필요한 이론과 비교기준을 고안하였으며, 응용 예로 제안된 방법을 s의 독립인 지수분포 모수의 기하평균 크기 비교에 적용하였다.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

수직 액막형 흡수기의 성능 최적화에 관한 연구 (Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film)

  • 김정국;조금남
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

판형열교환기의 운전 및 설계변수에 따른 파울링 특성에 관한 연구 (The Fouling Characteristics of Plate Heat Exchangers with Geometric and Operating Parameters)

  • 전재명;이응찬;강훈;김용찬
    • 설비공학논문집
    • /
    • 제26권4호
    • /
    • pp.163-168
    • /
    • 2014
  • The plate heat exchanger has been widely used in water heating systems due to high efficiency, simple structure, and easy maintenance. However, the studies on the effects of fouling on the heat transfer performance under various operation and maintenance conditions are very limited in the open literature. The objective of this study is to investigate the effects of fouling with calcium carbonate ($CaCO_3$) on the heat transfer characteristics of the plate heat exchanger under various operating and geometric conditions. The heat transfer coefficient and pressure drop in the plate heat exchangers were measured under accelerated fouling conditions with $CaCO_3$ by varying geometric and operational parameters. The fouling resistance increased with the decrease in the flow rate, and the increase in the chevron angle and the concentration.

AVHRR MOSAIC IMAGE DATA SET FOR ASIAN REGION

  • Yokoyama, Ryuzo;Lei, Liping;Purevdorj, Ts.;Tanba, Sumio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.285-289
    • /
    • 1999
  • A processing system to produce cloud-free composite image data set was developed. In the process, a fine geometric correction based on orbit parameters and ground control points and radiometric correction based on 6S code are applied. Presently, by using AVHRR image data received at Tokyo, Okinawa, Ulaanbaatar and Bangkok, data set of 10 days composite images covering almost whole Asian region.

  • PDF

Asymmetric Modeling in Beta-ARCH Processes

  • S. Y. Hwang;Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • 제31권4호
    • /
    • pp.459-468
    • /
    • 2002
  • A class of asymmetric beta-ARCH processes is proposed and connections to traditional ARCH models are explained. Geometric ergodicity of the model is discussed. Conditional least squares as well as maximum likelihood estimators of parameters and their limit results are also presented. A test for symmetry of the model is studied with limiting power of test statistic given.

PARAMETRIC DESIGN을 위한 자동설계모듈 생성 (Automated design module generation system for parametric design)

  • 이석희;반갑수
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.236-247
    • /
    • 1993
  • An davanced method for the automatic generation of parametric models in computer- aided design systems is required for most of two-dimensional model which is represented as a set of geometric elements, and constraining scheme formulas. The development system uses geometric constraints and support of topology parameters from feature recognition and grouping the design entities into optimal ones from pre-designed drawings. The aim of this paper is to present guidelines for the application and development of parametric design modules for the standard parts in mechanical system, the basic constitutional part of mold base, and other 2D features.

  • PDF

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.