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Asymmetric Modeling in Beta-ARCH Processes

S. Y. Hwang' and Myung-Wook Kahng!

ABSTRACT

A class of asymmetric beta-ARCH processes is proposed and connections
to traditional ARCH models are explained. Geometric ergodicity of the
model is discussed. Conditional least squares as well as maximum likelihood
estimators of parameters and their limit results are also presented. A test
for symmetry of the model is studied with limiting power of test statistic
given.
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1. Introduction

Since the seminal paper of Engle (1982), a lot of research has been directed
to conditional heteroscedastic autoregressive {ARCH) models in which the condi-
tional variance (or volatility) was specified as a linear combination of the squared
residuals. Despite Engle’s ARCH’s usefulness in many applications, there has
recently been growing interest in modeling the conditional variance via nonlinear
ARCH using other functional forms rather than squared residuals, especially in
the field of econometric applications. Guegan and Diebolt (1994) proposed the
first order B-ARCH process and this was extended to m-order cases by An et al.
(1997). The m-order S-ARCH process {X,} is defined as

Xt = /Ut-1 " €&, (1 1)

Vi1 = p + OtllXt_llﬁ + -+ O‘let—mIﬂ

where 0.< § < 2, and {e;} is a sequence of i1d random variables with mean zero
and variance unity. It is obvious that § = 2 provides Engle’s linear ARCH. Gue-
gan and Diebolt (1994) and An et al. (1997) investigated probabilistic structures
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such as geometric ergodicity and existence of moments for 3-ARCH processes.
Hwang and Basawa (2001) studied nonlinear autoregressive processes generated
by S-ARCH errors in (1.1) and derived asymptotic results concerning parameter
estimation.

Li and Li (1996) introduced a class of double threshold ARCH where the
“threshold” concept was emerged into conditional variance as well as conditional
mean. They proposed detailed fitting strategies of the model including order
identification, estimation and diagnostic checking with applications to Hong Kong
Hang Seng Index. Recently Hwang and Woo (2001) investigated a first order
threshold ARCH model applied to diverse Korean financial times series. The
m-~order threshold model is defined by the equation

Xy = VvV Ut—1 " €,

vie1 = ag + o1 (X0 )2+ e (X )% + - (1.2)

+ alm(*Xt_tm)2 + a2m(Xt_—m)2

where and throughout the paper the notation a;” = max(ay,0), a; = max(—a,0)

will be used. Li and Li (1996) argued that (1.2) was capable of capturing the
asymmetric phenomena in the conditional variance when ay; # ag;. It seems
though that (1.2) is intrinsically symmetric since only the slopes (a1; and ay;) are
permitted differently while retaining the same square functional forms around
Z€ero.

In this article we propose a class of models possessing asymmetric conditional
variances by combining (1.1) and (1.2). The developed model is given by

X = Vi1 ey,

vy = ap + a1 (X)) + aor (X2 )P2 + - (1.3)
+ alm(-Xt—tm)ﬁlm + an(Xt__m)ﬂZm.

Notice that different S8i; and fo; entail asymmetry in the conditional variance,
and the class of models in (1.3) is rich enough to include the following models as
special cases.

Example 1 (Engle’s ARCH). Setting f1; = By = 2 and ap; = ag; (1 =
1,...,m) in (1.3) reduces to Engle’s ARCH;

Example 2 (5-ARCH). (1.1) can be obtained by choosing 81; = B2; = 8 and
o =ag =a(i=1,...,m);

Example 3 (Threshold ARCH). Substituting 8i; = B2 = 2 in (1.3) yields
Eq. (1.2).
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The main objectives of the paper are not to present comprehensive statistical
account of the model in (1.3) nor to give details on technicalities. Rather, our
intention is to motivate the model to be an applicable class of asymmetric ARCH
towards invoking future research topics. The rest of the paper is organized as
follows. Section 2 briefly addresses the stationarity of the models and parameter
estimation is discussed in Section 3 where the least squares and the maximum
likelihood methods are investigated. Section 4 is concerned with testing symmetry
of the model. It is to be noted that (1.3) exhibits a symmetric pattern, provided

H:ﬂli:ﬁgiZQ and Q1; = Q94 (i=1,...,m).

The Wald test statistic is proposed for testing H and the limiting power
function is presented.

2. The Model and Stationarity

Consider the observation process {X;} generated by

Xt = fui-1 - ey,
Vi1 = Qo + Olll(Xttl)B“ + a21(Xt:1)’821 + - (2.1)

+ am (X )P+ aom (X, )P2m

where and in the sequel {e;} is possibly non-Gaussian iid sequence of random
variables with zero mean and unit variance and the (4m+1) x 1 vector of param-
eters is denoted by 8 = (010, Q11,0215 - -+, Wy ¥9m, B11, 8215 - - - Bim, ﬂgm)T with
og>0,01 20,00, >0and 0< 51; <2,0< By <2

(A.1) The common probability distribution of {e;} is absolutely continuous with
respect to Lebesgue measure and is equipped with support on the whole real line
(—00, 00).

It is obvious that (2.1} is a Markov process of order m, which facilitates the
derivation of conditions for the geometric ergodicity of the model. Introduce
m x 1 vectors Y;, H(-) and V(-) such that Y;_1 = (X¢, Xi—1,.-v, Xemma1)?,
H(Yi 1) = (0,X¢—1,..., X¢—m41)T and V(Yi-1) = (V0i=1,0,...,0)T which in
turn yield the following first order m x 1 vector Markov process:

Yi=H(Y: 1) +V(Yi-1) e

One may establish the geometric ergodicity of {Y¥;} (and hence for {X;})
using various sets of conditions for Markovian time series. Refer to, for instance,
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Feigin and Tweedie (1985), and An et al. (1997). Let a(f) = max(oq;, ag;),
J C {1,...,m} denote the collection of all subscripts ¢ such that either £;; = 2
or fB9; = 2. The lemma below presents a set of sufficient conditions for the
geometric ergodicity of the model.

Lemma 1. Under (A.1), {X:} in (2.1) is geometrically ergodic if 3, ; a(i) < 1.

Remarks. For the special case of m = 1, the condition Y icsa(i) < 1is equiva-
lent to

(i) max(aqs,a9;) < 1 when either 81 =2 or By = 2;
(ii) trivially satisfied when 0 < 81 <2 and 0 < 3 < 2.

Condition (i) coincides with the result in Hwang and Woo (2001) and (ii) is
analogous to those in An et al. (1997).

Proof. Arguing with Theorem 2 in Feigin and Tweedie (1985), lemma, is es-
sentially obtained by verifying that there exists a non-negative continuous real
valued function g : R™ — R such that for all ||y;—1|| large,

E(g(Y:) | Yi_1 = y-1)
9(ys-1)

< 1. (2.2)

A straightforward manipulation of the proof of Theorem 3.2 of An et al. (1997)
shows that under ), ; a(i) < 1, (2.2) holds by taking g(-) as maximum norm,

viz., g(y1—1) = ||yt-1llo- One can also deduce from (A.1) that {Y;} is ¢-
irreducible when ¢ is the Lebesgue measure on R™ and is a Feller chain (cf.
An et al., 1997), which completes the proof. a

Therefore, the following will be assumed throughout.

(C.1) The model (2.1) is geometrically ergodic.

3. Estimation of Parameters

We begin with the conditional least squares(CLS) estimation problems. Based
on the data, { X _p41,..., X1,..., X, } the conditional least squares estimator 8,,
of parameters 6 = (g, @11, @21, - - -, Q1m, Q2m, Bi1, P21y - - -, Bim, Bom )T is obtained

by minimizing
n

Un(8) =D [ X7 —v1(0)] (3.1)

1=1
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In order to discuss the asymptotic properties for En, we need to impose the
following.

(C.2) The finiteness of eighth order moment of the stationary distribution:
EX8< oo .

Theorem 1. Under (C.1) and (C.2) there ezists, with probability tending to one,
a sequence of estimators §n minimizing ¥, (0) and §n s strongly consistent to
6. Furthermore,

Vn (0, —0) % N(0, ATTBA!)

where A and B are specified below.

Proof. Conditions (C.1) and (C.2) imply the relevant three conditions in Theo-
rem 3.1 of Tjgsthiem (1986) and hence, with probability converging to one, there
exists a sequence of estimators §n which is strongly consistent. Note that §n
solves 0¥,,(8)/08 = 0. Following the lines as in Klimko and Nelson (1978), and
Tjpstheim (1986), it can be verified [under (C.1) and (C.2)] that

820, (0)] " 8T, (6)
— = -1Z “n\7) . =1/2 2 *n\Y)
Vn (0, —6) [n g } [n 50 + 0p(1). (3.2)
The ergodic theorem tells us that n=! 2¥,,(8)/3%8 converges in probability to A
where A = plim(n~!-8%¥,,(0)/6%0). It may also be noticed that 9, (0)/08 is a
sum of zero mean martingale differences and thus it follows from the martingale
central limit theorem that

n_l/2 QE_TLEB_)

d
50 — N(0, B)

where
B =4E[(X? —v:-1(8))? - 0v;_1(0)/00 - (Ov:_1(0)/00)T ]

of which the existence is secured by (C.2), which combined with (3.2} yields the
theorem. 0O

We now turn to the maximum likelihood estimation problem. Denoting the
density of e; by f(-), the log-likelihood 1,,(8) at the parameter @ is given by

n

12(8) = 3 [log f(er) - % log v;_1(8)]. (3.3)

i=1
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We introduce S, (6) and F;,(0) for the normalized score function and the average
sample Fisher information matrix, respectively, viz.,

S.(8) =n"Y201,(8)/060, F,(0)=—-n"'0S,(8)/06. (3.4)

Let @ be arbitrarily chosen but a fixed parameter value which is assumed to
be the interior point of the parameter space, and consider the moving parameters
0, = 6 +h/\/n converging to @ as n tends to infinity with h being a given vector
of constants. Define the log-likelihood ratio R, (8, h) associated with 6, and 6
as R,(0, h) = 1,(8,) — 1,(8). In order to obtain the asymptotic expansion of
R, (0, h), assume that the condition below is satisfied.

(C.3) The density f(-) of e; is such that if = E[(d log f(e:) /de:)?] < oo. Also,
for the scale family of densities {k;(e;) = b1 f(e;/b), b > 0} , I(b) is continuous
in b where I(b) = E[(d log ky(e;) / db)?] < 00 .

All the probabilistic statements hereafter in this section will be made under
the probability measure corresponding to 8 unless stated otherwise.

Theorem 2. Assume that EX} < oo and, (C.1) and (C.3) hold. We then have,
(i) Rn(8, h) = hTS,(0) — hTF(8)h/2 + 0,(1);
(i) 5(8) % N(0, F(8)),

where F(0) = plim[F,(0)].

Proof. The main arguments are straightforward adaptations of the works in
Bickel et al. (1993, p.14). We will thus provide outlines of the proof only. Con-
sider the (square root) conditional density ratio of 8* to 6:

91(6%,0) = [c(8%) / ct(9)]*/? (3.5)

where ¢;(0) stands for the conditional density of X; given X;_1,...,Xt—m, i€,
ct(8) = f(e:(0)/+/vi—1(0)). Provided one can show that g;(8*, 6) is differentiable

in quadratic mean with respect to 8* at 8" = 0, viz., as A — 0,
A7 [g4(8 + A\h, 8) — g:(0,8)] — hT§,(8) in quadratic mean (3.6)

where

§(0) =[2c(8)]7! - 0ct(6) /09, (3.7)
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the assertion (i) and (ii) are then immediate consequences of quadratic mean
differentiability of g(0*,6). See Roussas (1972, Chapter 2). Hence, our task
reduces to verifying (3.6) which is in turn implied by

lim BA™* {g,(6 + Ah, 6) ~ 1}°] < E[h" 3,(6) . (38)

Exploiting finite fourth order moment condition and continuity of I(b) in (C.3),
and employing together the lines in p. 14 of Bickel et al. (1993) provides (3.8
which completes the proof. O

The next theorem identifies the limiting distribution of the maximum likeli-
hood estimator @,,r which solves the score equation S,(8) = 0.

Theorem 3. Under the same conditions as in Theorem 2, we have the following
as m — 00

(1) With probability tending to one, there ezists a unique consistent solution of
Sn(0) =0;

(ii) Let 1 denote the consistent solution of Sn(8) = 0. Then

V(@ ~8) -5 N(0, F71(8)).

Proof. Denote the sequence of open d#-neighborhood around 8 by N,(0,4) =
{6*|\/n||0* — 6]| < §}. Note that the event E,(0, ) = {l,(8*) — 1,(8) <
0, for all 8* in N, (8, §)} ensures that the log-likelihood attains a unique local
maximum at gML, say, inside N, (8, ¢). From Theorem 2 it is obtained that

R (6, h) = 1,(8,) — 1,(8) —% N(—7/2, 1)

where 7 = hT F(@)h. One can then choose 7 sufficiently large so that given
€ >0, P[E,(0, §)] > 1 —e¢, for all sufficiently large n, which implies the assertion
(i). See Fahmeir and Kaufmann (1985) for similar arguments in the context of
generalized linear models. Since Sn(aML) = 0p(1), together with the Taylor’s
expansion of S, (0) around 6 = Oa11, it can be verified via standard arguments
that

Vi (O — 8) = FH(8) - 5.(6) + 0p(1)

which concludes (ii). O
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It follows from Theorem 2 that two probability measures associated with
0, = 6 + h/\/n and @ are mutually contiguous, and asymptotic normality of

-~

01, remains valid under 8,
v (Onr — 0,) ~5 N(0, F1(8)) under 8, (3.9)

which are related crucially to the non-null limiting distribution of various test
statistics (¢f. Hall and Mathiason, 1990).

4. Tests for Symmetry

This section is concerned with the problem of testing the symmetry of the
model. Define 2m x 1 vector of constants,

n = (a1 — 21, .-, C1m — Com, B11 — Boty - -+, Bim — Bom) T

and consider the problem of testing composite hypotheses H for symmetry against
the sequence of alternatives K,:

H:n=0,K,:n=£0//n (4.1)

with £ being a 2m x 1 vector of constants. The Wald statistic is proposed for
testing (4.1)
Tp=n Ty [M-F7 (OnL) M7 Ty, (4.2)

with 7, =M - 111, where 2m x (4m + 1) matrix M is defined as

0 1-1 0 0 --- 0 O
0 0 1-1 0 0

M =
060 000 - 1-1

so that n = M .- 8. The following theorem derives both the null and non-null
distributions of Tj,.

Theorem 4. Assume the same conditions as those for Theorem 2. The Wald
statistic Tp, under Ky, has a limiting non-central chi-squared distribution with
non-centrality parameter specified below. In particular, T, converges (in distribu-
tion) to chi-squared distribution with 2m degrees of freedom under H.
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Proof. It is implied by (3.9) that under K,
Vi (fpgp — M- 8,) -5 N(0, M- F~'(8) - M"). (4.3)

Let @y denote the parameter vector 8 with restrictions of a1; = ag; and §y; = B
as imposed in the null hypothesis of symmetry. It then readily follows from
(4.3) that T,, converges to, under K, non-central chi-squared distribution with
T[M-F~'(0g)- MT]~1£ as the non-centrality parameter. The null distribution
is immediate by setting £ = 0 in K,. g
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