• 제목/요약/키워드: geometric parameters

검색결과 1,161건 처리시간 0.032초

Optimal Design of Compact Heat Exchanger (Louver Fin-tube Heat Exchanger for High Heat Transfer and Low Pressure Drop)

  • Kang, Hie-Chan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권7호
    • /
    • pp.891-898
    • /
    • 2011
  • The present work was conducted to get the best geometric information for the optimum design of the complex heat exchanger. The objective function for optimal design was expressed as a combination of pressure drop and heat transfer rate. The geometric parameters for the variables of louver pitch and height, tube width, etc., were limited to ranges set by manufacturing conditions. The optimum geometric parameters were calculated by using empirical correlations and theory. The sensitivity of the parameters and optimum values are shown and discussed. The weighting factor in the objective function is important in the selection of the louver fin-tube heat exchanger.

A Study on the Air-Lubricated Herringbone Groove Journal Bearing by Finite Element Method

  • Park, Shin Wook;Rhim, Yoon Chul
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.46-54
    • /
    • 2001
  • The herringbone groove journal bearing (HGJB) has chevron type grooves on stationary or rotating member of the bearing so that they pump the lubricant inward the grooves when journal rotates. As a result, the pressure is generated around the journal so that the radial stiffness and dynamic stability are improved comparing to the plain journal bearing (PJB) when the bearing operates near the concentric condition. The narrow groove theory, conventionally adopted to simulate the concentric operation of HGJB, is limited to the infinite number of grooves. A numerical study of air-lubricated HGJB is presented for the finite number of grooves. The compressible isothermal Reynolds equation is solved by using Finite Element Method together with the Newton-Raphson iterative procedure and perturbation method. The solutions render the static and dynamic performances of HGJB. Comparison of present results with a PJB validates previously published finite difference solution. The HGJB's geometric parameters influence its static and dynamic characteristics. The optimum geometric parameters are presented for the air-lubricated HGJB in particular conditions.

  • PDF

원통연삭 가공물의 3차원 형상특성에 관한 연구 (A Study on the 3-D Form Characteristics of Center Ground Parts)

  • 조재일;김강
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.95-99
    • /
    • 1996
  • The form accuracy of parts has become an important parameter. Therefore dimensional tolerance and geometric tolerance are used in design to satisfy required quility and functions of parts. But the informations for machining conditions, which can satisfy the assigned geometric tolerance in design, are insufficient. The objectives of this research are to study the effects of the grinding parameters such as traverse speed, work speed, depth of cut, and dwell time on the after-ground workpiece shape, and to find out the major parameters among these parameters. Finally, a methodology is proposed for getting the optimal grinding condition for precision workpiece The results are as follows; The effects of work speed and depth of cut on workpiece shape are ignorable compared to the effect of traverse speed. These is the optimal dwell time depending on the traverse speed. The optimal dwell time is decreasing when the traverse speed is increased.

  • PDF

평행류 열교환기의 헤더부 형상 최적화

  • 오석진;이관수
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.1017-1024
    • /
    • 2001
  • The optimum shape of header part in a PFHE (parallel-flow heat exchanger) is studied. The optimal values of each geometric parameter are proposed according to their order of influence with varying the four important parameters (the injection angle of working fluid ($\Theta$), the shape of inlet(S), the location of inlet ($y_c/D_{in}$) and the height of the protruding flat tube ( $y_{b/}$ $D_{in}$ )). The optimal geometric parameters are as follows:$\Theta= -21^{\circ}C,\; S=Type\; A \;an\;y_b/D_{in}$/=0. The heat transfer rate of the optimum model, compared to that of the reference model, is increased by about 55%. The optimal geometric parameters ran be applicable to the Reynolds number ranging from 5,000 to 20,000.0.

  • PDF

저잡음 MOSFET를 위한 효과적인 파라미터 추출 (Efficient Parameter Extraction for Low Noise MOSFET)

  • 이상배;차균현
    • 대한전자공학회논문지
    • /
    • 제26권3호
    • /
    • pp.113-123
    • /
    • 1989
  • 드레인 전류와 잡음스펙트럼밀도의 성능규격(performance specification)을 만족하는 수율(yield)이 최대인 MOSFET의 새로운 최적한 기하학적 피라미터들의 각각의 값들은 공칭값의 ${pm}3%$ 의 범위 내에서 정규분포를 형성하도록 랜덤하게 발생시켰다.

  • PDF

NOVEL GEOMETRIC PARAMETERIZATION SCHEME FOR THE CERTIFIED REDUCED BASIS ANALYSIS OF A SQUARE UNIT CELL

  • LE, SON HAI;KANG, SHINSEONG;PHAM, TRIET MINH;LEE, KYUNGHOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권4호
    • /
    • pp.196-220
    • /
    • 2021
  • This study formulates a new geometric parameterization scheme to effectively address numerical analysis subject to the variation of the fiber radius of a square unit cell. In particular, the proposed mesh-morphing approach may lead to a parameterized weak form whose bilinear and linear forms are affine in the geometric parameter of interest, i.e. the fiber radius. As a result, we may certify the reduced basis analysis of a square unit cell model for any parameters in a predetermined parameter domain with a rigorous a posteriori error bound. To demonstrate the utility of the proposed geometric parameterization, we consider a two-dimensional, steady-state heat conduction analysis dependent on two parameters: a fiber radius and a thermal conductivity. For rapid yet rigorous a posteriori error evaluation, we estimate a lower bound of a coercivity constant via the min-θ method as well as the successive constraint method. Compared to the corresponding finite element analysis, the constructed reduced basis analysis may yield nearly the same solution at a computational speed about 29 times faster on average. In conclusion, the proposed geometric parameterization scheme is conducive for accurate yet efficient reduced basis analysis.

Nonparametric Bayesian Multiple Comparisons for Geometric Populations

  • Ali, M. Masoom;Cho, J.S.;Begum, Munni
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1129-1140
    • /
    • 2005
  • A nonparametric Bayesian method for calculating posterior probabilities of the multiple comparison problem on the parameters of several Geometric populations is presented. Bayesian multiple comparisons under two different prior/ likelihood combinations was studied by Gopalan and Berry(1998) using Dirichlet process priors. In this paper, we followed the same approach to calculate posterior probabilities for various hypotheses in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships on the parameters of several geometric populations. This also leads to a simple method for obtaining pairwise comparisons of probability of successes. Gibbs sampling technique was used to evaluate the posterior probabilities of all possible hypotheses that are analytically intractable. A numerical example is given to illustrate the procedure.

  • PDF

Geometric Modeling of Linear Pushbroom Images : SPOT5 Images

  • Koo, Ja-Hyuck;Jung, Hyung-Sup;Lee, Ho-Nam
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1165-1167
    • /
    • 2003
  • Geometric corrections are required to compensate skew effects, earth rotation effects and so on. Parameters for geometric modeling can be acquired from the metadata information. These parameters allow to locate on ground every pixel of acquired images. In this paper, we tested the precision of geometric modeling of linear pushbroom images, acquired by SPOT 3 and 5 using the satellite orbit information itself without additional external data. The result acquired from examination to recovery the geometry of image using 30 GCPs have about 650m RMSE in SPOT 3 and about 170m RMSE in SPOT 5.

  • PDF

Image and Observer Regions in 3D Displays

  • Saveljev, Vladimir
    • Journal of Information Display
    • /
    • 제11권2호
    • /
    • pp.68-75
    • /
    • 2010
  • The relation between light sources and screen cells is considered part of the theoretical model of an autostereoscopic 3D display. The geometry of the image and observer regions is presented, including the cases of single and multiple regions. The characteristic function is introduced. Formulas for the geometric parameters are obtained, including areas and angles. Special attention is drawn to the screen location. The method of transforming the formulas between regions is stated. For multiple regions, geometric dissimilarity was found. This allows the model to be applied in finding the geometric characteristics of multiview and integral-imaging 3D displays.

유한요소법과 실험계획법을 이용한 고온 열교환기용 S-관의 형상 최적화 (Shape Optimization of S-tube for Heat Exchanger Used in High Temperature Environment Using FE Analysis and DOE)

  • 정호승;조종래
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권4호
    • /
    • pp.497-503
    • /
    • 2012
  • 본 연구의 목적은 고온, 고압 환경에서 사용되는 열교환기의 전열관에서 발생되는 열팽창에 따른 열응력, 진동과 같은 기계적 특성을 개선시키고, 전열부 체적을 최소화시키는 관점에서 실험계획법을 이용하여 구불구불한 관 형상에 대하여 형상최적화를 수행하였다. S-관 형상에 대하여 부분별 용도를 제시하였고, 형상 최적화를 위해서 형상변수 및 범위를 정한 후, 유한요소해석을 수행하여 형상변수에 따른 구조적 특성을 평가하였고, 요인배치법을 이용하여 형상변수의 주효과를 분석한 후, 반응표면법(Response surface Methodology)을 이용하여 회귀방정식을 구하고, 최적화 툴을 이용하여 최적화를 수행하였다.