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Abstract : The herringbone groove journal bearing (HGJB) has chevron type grooves on stationary or rotating member of the
bearing so that they pump the lubricant inward the grooves when journal rotates. As a result, the pressure is generated around
the journal so that the radial stiffness and dynamic stability are improved comparing to the plain journal bearing (PJB) when
the bearing operates near the concentric condition. The narrow groove theory, conventionally adopted to simulate the concentric
operation of HGJB, is limited to the infinite number of grooves. A numerical study of air-lubricated HGJB is presented for the
finite number of grooves. The compressible isothermal Reynolds equation is solved by using Finite Element Method together
with the Newton-Raphson iterative procedure and perturbation method. The solutions render the static and dynamic
performances of HGJB. Comparison of present results with a PJB validates previously published finite difference solution. The
HGJB’s geometric parameters influence its static and dynamic characteristics. The optimum geometric parameters are
presented for the air-lubricated HGJB in particular conditions.
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Introduction

The herringbone groove journal bearing (HGIB) began to be
studied through analysis and experiment from the 1960s [1-3].
HGJB was examined to improve the stiffness and the stability
of the bearing for high speed and light loaded operation[4].
Most of analytic studies were conducted based on the “Narrow
groove theory”, which assumes that there is infinite number of
grooves on the bearing system. In 1977, Bootsma and
Tielemans accomplished an experimental study of leakage-free
operation of HGJB [5]. In these days, researchers attempt to
apply HGJB to small size, high precision household electric
appliances due to its high rotational stability characteristics [6].

Recently, the HGIB is regarded as an excellent replacement
of ball bearings in the spindle system of the computer hard
disk drive due to its small non-repeatable run-out (NRRO) and
low noise characteristics [7,8]. An NRRO is the one of major
sources for the track mis-registration between the read/write
head and the disk data track so that it prevents us from
achieving high track density in a computer hard disk drive. The
fluid film bearing is possible to keep low NRRO because it
prevents direct contact between journal and bearing as well as
increases radial damping to suppress the vibration. In addition
to the above advantages, herringbone grooves pump lubricant
toward the center of the chevron, which reduces the side
leakage as well as increases the stability of the rotating system
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in comparison with a plain journal bearing.

A 2-D analysis of HGJBs has been made by Murata,
Miyake, Kawabata [9] in which potential flow theory has been
applied to the flow of grooved journal bearings. Kobayashi
[10] presented a simulation procedure for the orbital motion of
the journal by using a multi-grid method with the divergence
formulation, as an engineering tool to study both stationary and
time-dependent problems of oil-lubricated HGJB.

A number of self-acting bearing designs have evolved that
have somewhat stable operating characteristics. These designs
shape the bearing surface to create artificial fluid-film wedges
in the absence of any applied radial load. The HGJB is one of
them. When we calculate the bearing performance there are
some geometric parameters for the HGJB as shown in Fig. 1
such as groove angle B, groove width ratio a=1/1, groove
depth ratio y= h,/h, number of grooves N, and asymmetric ratio
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Fig. 1. Configuration of a HGJB and definition of bearing
geometric parameters.
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6=D/D.

In this paper, a numerical study of air lubricated HGJB is
presented for the finite number of grooves. A compressible
Reynolds equation is solved numerically by using Finite
Element Method. The non-linearity of the discretized
equations is linearized with the Newton-Raphson procedure.
Load capacity, attitude angle, stiffness, damping coefficients,
and stability are given for various geometric parameters for the
case of smooth member rotating. The goal of this study is
finding optimum geometric parameters considering maximum
stability of the rotating system.

Air-Lubricated HGJB

Governing Equation

The pressure distribution in a fluid film bearing can be
computed by the Reynolds equation which is derived from the
Navier-Stokes  equations under certain  assumptions.
Assumptions used in this study are isothermal and isoviscous
fluid with perfect gas law, laminar flow with no-slip boundary
conditions. The governing equation obtained is the following
nonlinear equation:

9 pn2 )+ 2 pp3oP) = 9 9
Sr2)- 3erE) = g 2gen |0

Before we go further, it is usval to non-dimensionalize the
governing equation to examine the bearing characteristics in
terms of non-dimensional parameters. When we use
dimensional parameters for the governing equation such as
ambient pressure p,, diameter of the bearing D = 2r, length of
the bearing L, bearing clearance c, viscosity (4, rotational speed
= U/r, whirl speed v, then we get dimensionless parameters
such as dimensionless coordinates 6=x/r, {=y/,
dimensionless pressure P = p/p,, dimensionless film thickness
H=h/c, bearing number A= (6ua/p,)r/c)’, dimensionless
time 7=jvt {j=(-1)"*}, whirl ratio %= vw, and diameter to
length ratio A=D/L. ,
Non-dimensionalized compressible Reynolds equations is
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(a) Force components and attitude angle

Fig. 2. Force components and coordinate system of a HGJB.

obtained by substituting above relations to the Eqn. (1) as
following:

J 3P 1,20 30P
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J 9 @
= AZ(PH) + 2jAY, = (PH).

Static and Dynamic Characteristics of a HGJB
In Fig. 2, the film thickness of the herringbone groove journal
bearing can be expressed as

H=1+¢€cos0+H,—> Groove Part
( ; 8 ) @A)

H=1+¢&cos0 — Ridge Part

As the smooth member rotates, we can discard the time term in
Eqn. (2) then we can get the steady-state equation as following:
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Integration of the pressure fields from Eqn. (4) over the
journal surface gives the fluid film bearing reaction forces and
journal attitude angle which are expressed as following:
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Perturbation method is applied to get dynamic coefficients.
The resultant reaction load has components F, and F, as shown
in Fig. 2. Performing a first-order Taylor expansion of these
components gives
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(b) Perturbation of journal center
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= (F)y+ K, Ax+ K, Az + C, AX' + C A7 ©)
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where Ax and Az are the corresponding whirl amplitudes of the
journal in x and z direction, respectively. K (=<k;,) and C
(:@ci «) are the stiffness and damping “coefficients,
res;};ctively, when f represents the load capacily and
apostrophes represent time derivatives. Recall that the direction
of the x axes was chosen so that (F,), = 0, where F represents

the dimensionless load defined as F = P ]Ii D= JF f +F ,2 .

Equations (6) and (7) can be recast as

Fel_ ((F_K)O)Jr Ko Ky, (Ax)+ Cox Cx (Ax') ®
Fz 0 sz Kzz Az sz sz AZ
If smooth member rotates, perturbed film thickness can be
expressed as follows using Eqn. (3) and 6° =0+ @

H= H0+(3—H) Ax+(a—H) Az = Hy+ cos8 'Ax + sin0 'Az
ox 0 o7 0 (9)

|:Kxx szi| — C -[kxx kxz:I = _lJ.CJeReﬂ:

K. K., P,LD ko ke 2 P, sin@' P,sinQ’
[Cxx sz:' - c® |:Cxx szji —

sz sz P“LD Cux Czz

The boundary conditions for the governing and perturbed
equations are ambient pressure at both ends in axial direction
and periodic in circumferential direction, i.e.,

Py=1,P,=0,P,=0 at Y=0,1, (15)
Py (6, ) =Py(6+2m, §), P, (6, {) =P (6+2m, {),
P, (6, O)=Py642m, ) (16)

Stability Conditions

Two kinds of dynamic instabilities may be found in fluid film
bearings. Since the gas film has lower damping properties than
the liquid film, these instabilities in gas-lubricated bearings
become more prominent than with liquid-lubricated bearings.
The one is associated with typical spring-mass natural
frequencies where the bearing fluid-film is the spring. The
other is a self-excited vibration characterized by having the
center of the shaft orbit around the center of the bearing at
some frequency equal to or somewhat less than one half of the
spinning or rotational velocity of the shaft. Under these
conditions, the capacity of the bearing to support radial load is
sharply reduced and may fall to zero. The shaft system may be

Picos8"' P,cos0’

Equation (8) is valid when the journal motion is harmonic.
The whirl amplitude of journal and its derivative can be written
in complex form as Ax=Re{gexp”} and Ax'=j Dx=
Re{jeexp™}, respectively. Consider a similar first-order
expansion of the pressure,

_ oP JP QP) : (QP) :
P= Ll = 1A = — | AzZ'.
Po+ (8x)0Ax " (BZ)O et ((9)(' OAx i a7 0 : (10)

Let the journal center have a static eccentricity ratio & with a
corresponding attitude angle &@,. This position is perturbed by a
small amount of motion due to the translation motion of the
journal: (g, & @,). The corresponding perturbed forms of the
dimensionless pressure and film thickness can be written as:

P=Py+d" P +5®"P,, (11)
H=Hy+g,d" cos0+ e, " 5in6. (12)

These two equations are substituted into Eqn. (2) to get
equations related to P, and P,, which are linear equations with
complex dependent variables. They can be solved numerically
once steady-state solution P, is obtained. The dynamic
coefficients, stiffness and damping coefficients, can be
expressed as follows:

}}d()dg (13)

1 Pycos8' P,cos@'
- Cjelm ded¢ (14)
2 P, sin@' P,sin0'

stable as the speed is increased until this threshold is reached.
Crossing this threshold through further, unlike an ordinary
critical speed, the shaft cannot pass through this one and attain
a region of stability on the other side at a higher speed.

States of neutral stability exist (for the case of the journal
bearing) at those whirl speeds where the tangential component
of the fluid film force vanishes, and when the centrifugal force,
due to whirl, is in equilibrium with the radial component of the
fluid force. At this point of neutral stability a critical mass of
the rotor may be determined. If the rate of change the radial
force component of the fluid film with respect to the rotor spin
speed becomes negative, the system will go unstable, and of
course if the derivative is positive the system will remain
stable.

If the system load is stationary, F = (F.),, then the equations
of motion for the constant speed journal mass m, can be
derived in x and z direction, respectively by applying small
perturbations Ax and Az on the equilibrium position. A set of
non-dimensionalized equation of motion is obtained as
following:
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2 and ¥, is the whirl ratio defined as j,= Y Fora given eccentricity ratio, homogeneous solutions to Eqn. (17)
0]

corresponding to the unstable root may be Ax = x,exp(7) and Az = Zhekp(f). Substituting these solutions into equation (17) gives:

2 ) .
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. 2 .
sz +.]Yxczx - ,}/w + Ma + Kzz +]yxczz

(18)

Thus either x,=z,=0, which is the trivial steady-state solution, or determinant of above equation must be zero, which is for the
nontrivial solution. This gives the information for the stability criteria for the rotor system as follows:
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(20)

. . . .. . cm, W
where, (M,),, is the dimensionless critical mass parameter normalized as (M), = ( ) .
cr

Using an initial guess of 0.5 for the whirl ratio 7, the
dimensionless critical mass (M,),, is found from the Eqn. (20)
and is substituted into the Eqn. (19). In general, there will be a
residue. Then an adjustment in the whirl ratio is made to
minimize the residue. The procedure is repeated until the
residue has become sufficiently small.

If M, is smaller than (A,),,, the system will be stable, but it
will be unstable for M, larger than (M,),. Thus, whether the
bearing is susceptible to instability obviously depends on the
values of the bearing coefficients, which in turn depend on the
bearing type and the various performance parameters to
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describe the film thickness.

Numerical Analysis

In this study, we have used the Bubnov-Galerkin’s method
which employs the same function for the weighting function
that is used in the approximating equation. To obtain the static
pressure distribution of air-lubricated journal bearing, we can
use Eqn. (4). First, we define residual equation for Eqn. (4)
multiplied by a suitable weighting function [N] as follows:

%(POHO)}CIA = 0. @n

Integrating by parts over a subdomain, employing the Green-Gauss Theorem, and applying boundary conditions given in Eqn. (15)

and (16) becomes

1,29N9P,

A

Newton-Raphson iteration procedure can be employed to
solve Eqn. (22), a nonlinear integro-differential equation.
Beginning with an initial guess of P,”, Newton-Raphson
method may be used to construct a sequence of P,°, P,®, etc.
as PP = P + ¥ where, ¥ is a solution of the linear
problem of W'P,")¥” + W(P,") =0. Here, W'(P,™) is the
Frechet derivative of W(P,™) with respect to P, evaluated at P,
= P,™, If it exists, this linear operator is defined by:

where

K] = [

A

9§ d¢

_ (9N9Po ) 3 JN
W(Bo) = J{POHO [(ae 70 1t EllS ] PoHoAxg

n N ON  1.,20N NT<9P
f{(Pé)H"@egera aN) [N]HO@G 06

}dA =0. 22)

WP " = lzm( W(P(")+ey/("))). (23)

The final discretized equation for each element can then be
obtained as:

(K" - K1 w"} = {F"} (24)

+ 1,12881\1;9’(;’?))}1,4}
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Eight node quadrilateral elements are used for the
computation. Three points Gaussian quadrature is employed
for the numerical integration and under-relaxation is used for
the stable iteration. Integration of the dynamic pressure field
(P, and P,) on the bearing surface gives stiffness (real part) and
damping (imaginary part) coefficients.

Results and Discussion

In order to verify the developed FEM code, some steady-state
results for a plain cylindrical gas-lubricated journal bearing
(Raimondi [11]) are compared with results from present
analysis. The code is able to accommodate a plain cylindrical
bearing by simply equating the groove depth yto 1.0. Here the
bearing length to diameter ratio L/D is set to 1.0.

Figure 3 presents the dimensionless load capacity F and the
attitude angle &, as a function of bearing number A for an L/D
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Fig. 3. Comparison of load and attitude angle for various
bearing number (£=0.4).

(a) PJB (A=5,€=0.3,L/D=1.0)

Fig. 4. The pressure distribution on a bearing surface for 8 grooves.
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ratio of one and eccentricity ratio € is 0.4. The present FEM
solutions coincide very well with Raimondi’s solutions.

Figure 4 presents the pressure distribution of a PIB and a
HGIB for the bearing number A=5.0 and eccentricity ratio
£=0.3, respectively. The geometric parameters of a HGJB are
groove angle f3=30°, groove width ratio or= 0.5, groove depth
ratio Y= 2.0, and number of grooves N = 8. In Fig. 4(a), there
are negative pressure regions but in Fig. 4(b), due to the
grooves, there is a pressure generated in negative pressure
regions of a PJB.

Figure 5 and 6 show a comparison of the dimensionless
stiffness coefficients and damping coefficients with a PJB and
a HGJB as a function of eccentricity ratio, respectively. The
dynamic coefficients are non-dimensionalized by a load
carrying capacity F at each eccentricity ratio. The direct
stiffness values K,, and K,, become larger as the eccentricity
decrease. These characteristics of the HGJB are due to the
existence of a pressure rise even with zero eccentricity, as
shown in Fig. 4.

Also, in Fig. 7 show the attitude angle of journal, load
capacity, stiffness, and damping of air-films using
incompressible algorithm. The incompressible algorithm is not
expected to give accurate characteristics of air-films. The
figure shows that large discrepancies occur between
incompressible algorithm and compressible algorithm. Thus,
the incompressible algorithm cant predict the air-film
characteristics correctly.

The characteristics of HGIB vary greatly by geometric
parameters. As shown in Fig. 1, these parameters are groove
angle f3, groove width ratio ¢, groove depth ratio %, bearing
length to diameter ratio L/D, and groove asymmetric ratio 4.
There should be a set of optimum design parameters of HGIB
from the view point of stability criteria. However, the general
optimal values for the geometric parameters are not proposed
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(b) HGIB (A=5, €=0.3, L/D=1.0)
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Fig. 6. Dimensionless damping coefficients variations for eccentricity ratios.

90
804 -4 025
—&— <& Compressible
70 @ @ Incompressible
P 4020 Z
. 60 2
g, 60 g
Q g
; 50 4 o
%’ 0.18 3
b=
2 40 g
g 0.10 g
2 1 8
=
< |
201 & F: Comprsssib_la Joes 2
10 —g— F: Incomprassible
~7 . vV
B LA A
0 AR e T e 0.00
o0 ot 02 03 04 O©O5 08 07 08 08

Eccantricity Ratio

(a) attitude angle and load variations

Direct Stiffness Kxx, N/m

6.0x10" 1.6x10°
5.5x10" —®—K_ : Compressible .
8 4 1.4x10°
5.0x10° —#—K_ : Incompressible x
. -G Compressible .
4.5x10" ~ . < 1.2x10°
——-C,, ' Incompressible %
4.0x10"

4 4 t.ox10° Z
3.5x10" / )
3.0x10' — Joone $,
2.6x10" ] ./v/v/ %

] O qeonc E
2.0x10" 1 8

. L=
1.6x10" o qJeoxc §
1.0x10" < 8

R L 20
sot’4 oe®

e A o
0.0 el et et e g e e 0.0
00 01 02 03 04 05 06 07 08 09

Eccertricity Ratio

(b) stiffness and damping coefficients variations

Fig. 7. Comparison of compressible and incompressible algorithm.

in this study, which consider cross-related effects between
those parameters. The effect of single geometric parameter to
the stability is examined instead.

We assume that the objective bearing system is in a steady
state and consists of smooth rotor and a fixed sleeve on which
eight grooves are formed, where groove angle f=30deg.,
groove width ratio or= 0.5, groove depth ratio y= 2.0, bearing
length to diameter ratio L/D = 1, and groove asymmetric ratio
6= 0.5 with two value of bearing number A= 0.2 and A =2.0.
Examinations are conducted mainly for the eccentricity ratio
which is the key variable of most journal bearing analysis.

The dimensionless critical mass variations for eccentricity
ratio are given in Fig. 8. The critical mass has a maximum
value for the groove angle of 20 deg. when the bearing number
is 0.2. However, the maximum value seems to be occurred at
less groove angle of 20 deg. as the bearing number increases
even in small eccentricity as shown in Fig. 8(b). Generally
speaking for highly compressible lubricant as air, the stability
decreases gradually as the groove angle increases.

*  As shown in Fig. 1, the groove width ratio is defined as
o=1/1. Thus, when the groove ratio a=0.5, the land and
groove widths are equal. As the groove width ratio decreases,
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Fig. 10. Effect of groove depth for the eccentricity for the bearing number A=0.2.

the groove becomes wide so that the load carrying capacity
decreases. The dimensionless critical mass variations for the
eccentricity ratio are given Fig. 9 for various groove width ratio
and two different bearing number, A =0.2 and A =2.0. As the
bearing number increases, the maximum dimensionless critical
mass is obtained for small groove width ratio throughout the
eccentricity ratio. However, the load carrying capacity itself
becomes smaller as the groove width ratio decreases since the
mean effective radial clearance becomes larger for small

groove width ratio. Therefore, it is not always the best solution
to pursue the maximum dimensionless critical mass for the
rotor system.

As shown in Fig. 1, the groove depth ratio y=1 means a
plain journal bearing. Figure 10 shows the variations of the
dimensionless load capacity and the critical mass for the
eccentricity ratio using the groove depth ratio as a parameter.
The dimensionless critical mass has its maximum value when
the groove depth is the same as the bearing clearance, ie.,
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Fig. 11. Effect of length to diameter ratio for the eccentricity for the bearing number A=0.

y=2.0 for the bearing number A=0.2. However, as the
bearing number increases, the groove depth ratio approaches to
unity for the maximum critical mass as well as for the
maximum dimensionless load capacity.

As the groove depth ratio increases, the mean effective
radial clearance increases so that load capacity decreases same
as the groove width ratio decreases.

Figure 11 shows the effect of the L/D ratio on dimensionless
load capacity and critical mass with respect to the eccentricity
ratio. As the L/D ratio increases, the dimensionless load
capacity increases faster with eccentricity ratio but the critical
mass increase slowly for small eccentricity range and then
increases faster for high eccentricity region. Since the critical
mass is normalized with the bearing load capacity we have to
pay special attention to the variation of the dimensionless
critical mass. It has quite high value for high L/D ratio but it
doesn’t mean that longer bearing is more stable than shorter
bearing because longer bearing has high load capacity.

Considering the effect of geometric parameters on the
bearing performance, it is not possible to propose an optimal
set of geometric parameters for the HGJB. Some applications
using HGJB have vertical shafts with light loads, and hence,
bearing instability is the major concern especially for the
operation with small eccentricity ratio. With the discussions
mentioned above, HGJB has superior characteristics to plain
journal bearing. However, all the geometric parameters related
to the HGJB can be determined case by case depend on the
geometrical constraints of the bearing system as well as the
operation condition at which the bearing is supposed to run.
The software developed in this study can provide appropriate
set of geometric parameters for the given conditions and can
make the criterion for stable operation.

Conclusions

In the present research, the static and dynamic characteristics
for the effects of geometric parameters of HGJB have been
investigated using FEM and perturbation methods. We analyze
the isothermal compressible fluid flow in herringbone groove
journal bearing using Reynolds equation for laminar,
inertialess flow. The compressible Reynolds equation is solved

by the Bubnov-Galerkin weighted residual method. The non-
linear discretized equations is computed with the Newton-
Raphson iteration procedure. A simulation tool based on the
Finite Element Method is developed to predict the static and
dynamic performances of the HGIB. Comparisons of the
present steady-state solutions given for a plain cylindrical
bearing with published numerical results confirmed the validity
of the FEM code. The following conclusions are drawn.

1. The development of significant direct stiffness while
running concentrically proves the distinct advantage of
using the HGIB over plain journal bearings. Thus the
herringbone groove journal bearing is more stable than
the plain journal bearing at nearly concentric operation.

2. Using a geometry with 8 grooves for bearing number
A =0.2 during nearly concentric operation, the optimum
geometric parameters of HGJB are groove angle =20
deg, groove width ratio a=0.3, groove depth ratio
¥=2.0, and L/D ratio of 1.5. These values yield a
maximum stability at nearly concentric position.

3. As the groove angle [ increases, the stability and load
capacity decrease. Since the grooves become shorter
supplying less bearing area for the pressure to develop.

4. The load capacity generally decreases as the grooves
become wide or deep, since in all of these cases the mean
effective radial clearance becomes large. ‘
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