• Title/Summary/Keyword: geometric optimization

Search Result 407, Processing Time 0.026 seconds

Shape Optimization of Rotating Cantilever Beams Considering Their Varied Modal Characteristics

  • Cho, Jung-Eun;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.246-252
    • /
    • 2004
  • The modal characteristics of rotating structures vary with the rotating speed. The material and the geometric properties of the structures as well as the rotating speed influence the variations of their modal characteristics. Very often, the modal characteristics of rotating structures need to be specified at some rotating speeds to meet their design requirements. In this paper, rotating cantilever beam is chosen as a design target structure. Optimization problems are formulated and solved to find the optimal shapes of rotating beams with rectangular cross section.

ON DUALITY THEOREMS FOR ROBUST OPTIMIZATION PROBLEMS

  • Lee, Gue Myung;Kim, Moon Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.723-734
    • /
    • 2013
  • A robust optimization problem, which has a maximum function of continuously differentiable functions as its objective function, continuously differentiable functions as its constraint functions and a geometric constraint, is considered. We prove a necessary optimality theorem and a sufficient optimality theorem for the robust optimization problem. We formulate a Wolfe type dual problem for the robust optimization problem, which has a differentiable Lagrangean function, and establish the weak duality theorem and the strong duality theorem which hold between the robust optimization problem and its Wolfe type dual problem. Moreover, saddle point theorems for the robust optimization problem are given under convexity assumptions.

Optimal Design of Ultracentrifuge Composite Rotor by Structral Analysis (초고속 원심분리기 복합재 로터의 해석 및 최적설계)

  • 박종권;김영호;하성규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.130-136
    • /
    • 1998
  • A procedure of stress and strength analysis has been proposed for the centrifuge rotor of composite materials of quasi-isotropic laminates. The goal in this study is to maximize the allowable rotating speed, that is, to minimize maximum strength ratio with the given path length by changing the geometric parameter-outer radius and ply angles in quasi-isotropic laminates. Optimum values of the geometric parameter-outer radius and ply angles are obtained by multilevel optimization. All the geometric dimensions and stresses are normalized such that the result can be extended to a general case. Two dimensional analysis at each cross section with an elliptic tube hole subjected to internal hydrostatic pressures by samples as well as the centrifugal body forces has been performed along the height to calculate the stress distribution with the plane stress assumption, and Tsai-Wu failure criterion is used to calculate the strength ratio. The maximum allowable rotating speed can be increased by changing the radii of the outer surface along the height with the maximum strength ratio under the unit value : The optimal number of ply angles maximizing the allowable rotating speed in quasi-isotropic laminates is found to be the half number of tube hole, and the optimal laminate rotation angle is the half of $[{\pi}/m]$. A $[{\pi}/3]$ laminate, for instance, is stronger than a $[{\pi}/4]$ laminate for the centrifuge rotor of 6 tube hole number even though they have the same stiffness.

  • PDF

Study on the Optimization of Absorption Performance of the Vertical Tube Absorber with Falling Film (수직 액막형 흡수기의 성능 최적화에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.830-838
    • /
    • 2005
  • The present study investigated the optimization of the absorption performance of the vertical absorber tube with falling film by considering heat and mass transfer simultaneously. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of coolant flow rate and the flow pattern by geometric parameters has been observed for the total heat and mass transfer rates through both numerical and experimental studies. Based on both predicted values, the optimal coolant flow rate was predicted as 1.98 L/min. The maximum absorption rate of the spring inserted tube was increased by the maximum of $20.0\%$ than those for uniform film of bare tube. Average Sherwood numbers and Nusselt numbers were increased as Reynolds numbers increased under the dynamic and geometric conditions showing the maximum absorption performance.

Evaluation and optimization of geometric error by using Taguchi method (다구찌기법에 의한 형상오차 평가 및 최적화)

  • 지용주;곽재섭;하만경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.298-303
    • /
    • 2004
  • parameters in surface grinding. Taguchi method which is one of the design of experiments has been introduced in achieving the aims. The process parameters were the grain size, the wheel speed, the depth of cut and the table speed. The effect of the process parameters on the geometric error was examined and an optimal set of the parameters was selected to minimize the geometric error within the controllable range of the used grinding machine. The reliability of the results was evaluated by the ANOVA.

  • PDF

Geometric error Prediction and Grinding Condition Optimization using Taguchi Methods (Taguchi 기법을 이용한 형상오차 예측 및 최적조건 선정)

  • Chi Long-Zhu;Lee Sang-Jin;Kwak Jea-Seob;Ha Man-Kyung;Jun Jae-Uhk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1583-1586
    • /
    • 2005
  • Grinding process is different from other machining processes such as turning, milling and drilling because the cutting edges in a grinding wheel doesn't have uniformity and acts differently on the workpiece at each grinding. This study focus on predicting the geometric error produced during surface grinding and selecting an optimal grinding condition to reduce the geometric error. To achieve the aim, the Taguchi design of experiments was applied and the S/N ratios of each grinding was used for evaluating the results. The predicted quantities by the S/N ratios were compared with the experimental results.

  • PDF

Design and Analysis of Ultrasonic Vibrator for Conformal Coating in LED Packaging (LED 공정의 균일 코팅을 위한 초음파 진동자 설계 및 해석)

  • Son, Byeoun-Ho;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.631-636
    • /
    • 2009
  • This paper presents design and analysis of ultrasonic vibrator featuring the piezoelectric actuator. After describing a geometric configuration of the proposed vibrator, an analytical model of the ultrasonic vibrator is formulated by adopting liquid film pattern theory and wave theory. The dynamic analysis and geometric optimization are then undertaken using a software ANSYS. The optimization is performed by taking the amplitude of the tip displacement as an objective function. The fluid flow characteristics of the proposed vibrator are analyzed by taking three different fluids: water, silicon oil and ethylene-glycol. This is achieved using a software FLUENT.

  • PDF

A NON-ITERATIVE RECONSTRUCTION METHOD FOR AN INVERSE PROBLEM MODELED BY A STOKES-BRINKMANN EQUATIONS

  • Hassine, Maatoug;Hrizi, Mourad;Malek, Rakia
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1079-1101
    • /
    • 2020
  • This work is concerned with a geometric inverse problem in fluid mechanics. The aim is to reconstruct an unknown obstacle immersed in a Newtonian and incompressible fluid flow from internal data. We assume that the fluid motion is governed by the Stokes-Brinkmann equations in the two dimensional case. We propose a simple and efficient reconstruction method based on the topological sensitivity concept. The geometric inverse problem is reformulated as a topology optimization one minimizing a least-square functional. The existence and stability of the optimization problem solution are discussed. A topological sensitivity analysis is derived with the help of a straightforward approach based on a penalization technique without using the classical truncation method. The theoretical results are exploited for building a non-iterative reconstruction algorithm. The unknown obstacle is reconstructed using a levelset curve of the topological gradient. The accuracy and the robustness of the proposed method are justified by some numerical examples.

A Geometric Optimization of a Microchannel for Temperature Gradient Focusing via Joule Heating (줄 발열에 의한 온도기울기 농축을 위한 미세채널 형상 최적화)

  • Han, Tae-Heon;Kim, Sun-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1623-1628
    • /
    • 2008
  • A temperature gradient focusing (TGF) via Joule heating phenomenon was numerically studied. The governing transport equations are implemented into a quasi-1D numerical model to predict the resulting temperature, velocity, and concentration profiles along a microchannel of varying width under an applied electric field. The model is used to analyze the effects of varying certain geometrical parameters of a microchannel on the focusing performance of the device. We show the effects of varying width of the microchannel having a fixed length, and propose the optimal geometry of the device. This method can be easily implemented into lab-on-a-chip (LOC) applications where focusing is required based on its simple design.

  • PDF

A study on structure analysis and material improvement lightweight of special-purpose vehicles axle (특수차량용 엑슬의 경량화를 위한 구조해석과 소재 개선에 관한 연구)

  • Lee, Jung-hwa;Kwon, Hui-june;Kang, Jung-ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.136-142
    • /
    • 2009
  • The vehicle's light-weight technology is divided into optimization of structure geometric and material. Structure geometric optimization and improvement of materials has examined to be power-train and maintenance on the severe condition. The core technology of Special vehicle's light-weight is constitute by Drop box, Axle and Final reduction gear. Technology and product of the parts is high to overseas and import dependency. We will want to examine the possibility of light-weight for the Axle Case and Drop box-connections. In this research, conventional design of excess weight will inhibit the mobility and fuel efficiency. Through the improvement of Axle material, we saw the possibility reducing weight. If you use the results of these studies, it will be available to domestic production technology and reducing weight of RV car, Dump truck, Track crain, etc.

  • PDF