• Title/Summary/Keyword: geometric invariants

Search Result 23, Processing Time 0.023 seconds

COMPLEX SCALING AND GEOMETRIC ANALYSIS OF SEVERAL VARIABLES

  • Kim, Kang-Tae;Krantz, Steven G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.523-561
    • /
    • 2008
  • The purpose of this paper is to survey the use of the important method of scaling in analysis, and particularly in complex analysis. Applications are given to the study of automorophism groups, to canonical kernels, to holomorphic invariants, and to analysis in infinite dimensions. Current research directions are described and future paths indicated.

ON THE SETS OF LENGTHS OF PUISEUX MONOIDS GENERATED BY MULTIPLE GEOMETRIC SEQUENCES

  • Polo, Harold
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1057-1073
    • /
    • 2020
  • In this paper, we study some of the factorization aspects of rational multicyclic monoids, that is, additive submonoids of the nonnegative rational numbers generated by multiple geometric sequences. In particular, we provide a complete description of the rational multicyclic monoids M that are hereditarily atomic (i.e., every submonoid of M is atomic). Additionally, we show that the sets of lengths of certain rational multicyclic monoids are finite unions of multidimensional arithmetic progressions, while their unions satisfy the Structure Theorem for Unions of Sets of Lengths. Finally, we realize arithmetic progressions as the sets of distances of some additive submonoids of the nonnegative rational numbers.

DISCRETE TORSION AND NUMERICAL DIFFERENTIATION OF BINORMAL VECTOR FIELD OF A SPACE CURVE

  • Jeon, Myung-Jin
    • The Pure and Applied Mathematics
    • /
    • v.12 no.4 s.30
    • /
    • pp.275-287
    • /
    • 2005
  • Geometric invariants are basic tools for geometric processing and computer vision. In this paper, we give a linear approximation for the differentiation of the binormal vector field of a space curve by using the forward and backward differences of discrete binormal vectors. Two kind of discrete torsion, say, back-ward torsion $T_b$ and forward torsion $T_f$ can be defined by the dot product of the (backward and forward) discrete differentiation of binormal vectors that are linear approximations of torsion. Using Frenet formula and Taylor series expansion, we give error estimations for the discrete torsions. We also give numerical tests for a curve. Notably the average of $T_b$ and $T_f$ looks more stable in errors.

  • PDF

Performance Optimization of LLAH for Tracking Random Dots under Gaussian Noise (가우시안 잡음을 가지는 랜덤 점 추적을 위한 LLAH의 성능 최적화)

  • Park, Hanhoon
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.912-920
    • /
    • 2015
  • Unlike general texture-based feature description algorithms, Locally Likely Arrangement Hashing (LLAH) algorithm describes a feature based on the geometric relationship between its neighbors. Thus, even in poor-textured scenes or large camera pose changes, it can successfully describe and track features and enables to implement augmented reality. This paper aims to optimize the performance of LLAH algorithm for tracking random dots (= features) with Gaussian noise. For this purpose, images with different number of features and magnitude of Gaussian noise are prepared. Then, the performance of LLAH algorithm according to the conditions: the number of neighbors, the type of geometric invariants, and the distance between features, is analyzed, and the optimal conditions are determined. With the optimal conditions, each feature could be matched and tracked in real-time with a matching rate of more than 80%.

A High Quality Mesh Generation with Automatic Differentiation for Surfaces Defined by Hamiltonian Lie Algebra

  • Sagara, Naoya;Makino, Mitsunori
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1141-1144
    • /
    • 2002
  • The research on computer graphics(CG) has been actively studied and developed. Namely, many surface/solid models have been proposed in the field of computer aided geometric design as well as the one of CG. Since it is difficult to visualize the complex shape exactly, an approximation by generating a set of meshes is usually used. Therefore it is important to guarantee the quality of the approximation in consideration of the computational cost. In this paper, a mesh generation algorithm will be proposed for a surface defined by Lie algebra. The proposed algorithm considers the quality in the meaning of validation of invariants obtained by the mesh, using automatic differentiation.

  • PDF

A Study On the Comparison of the Geometric Invariance From A Single-View Image (단일 시각방향 영상에서의 기하 불변량의 특성 비교에 관한 연구)

  • 이영재;박영태
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.639-642
    • /
    • 1999
  • There exist geometrically invariant relations in single-view images under a specific geometrical structure. This invariance may be utilized for 3D object recognition. Two types of invariants are compared in terms of the robustness to the variation of the feature points. Deviation of the invariant relations are measured by adding random noise to the feature point location. Zhu’s invariant requires six points on adjacent planes having two sets of four coplanar points, whereas the Kaist method requires four coplanar points and two non-coplanar points. Experimental results show that the latter method has the advantage in choosing feature points while suffering from weak robustness to the noise.

  • PDF

A High Quality Mesh Generation for a Surface defined by Linear tie Algebra

  • Sano, Hiroyasu;Makino, Mitsunori
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1103-1106
    • /
    • 2000
  • Recently, the research on computer graphics (CG) has been actively studied and developed. Namely, many surface/solid models have been proposed in the field of computer aided geometric design as well as the one of CG. Since it is difficult to visualize the complex shape exactly, an approximation by generating a set of meshes is usually used. Therefore it is important to guarantee the quality of the approximation in consideration of the computational cost. In this paper, a mesh generation algorithm will be proposed for a surface defined by linear tie algebra The proposed algorithm which considers the quality in the meaning of validation of invariants obtained by the mesh.

  • PDF

ON THE CURVATURE THEORY OF A LINE TRAJECTORY IN SPATIAL KINEMATICS

  • Abdel-Baky, Rashad A.
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.333-349
    • /
    • 2019
  • The paper study the curvature theory of a line-trajectory of constant Disteli-axis, according to the invariants of the axodes of moving body in spatial motion. A necessary and sufficient condition for a line-trajectory to be a constant Disteli-axis is derived. From which new proofs of the Disteli's formulae and concise explicit expressions of the inflection line congruence are directly obtained. The obtained explicit equations degenerate into a quadratic form, which can easily give a clear insight into the geometric properties of a line-trajectory of constant Disteli-axis with the theory of line congruence. The degenerated cases of the Burmester lines are discussed according to dual points having specific trajectories.

Integrability of the Metallic Structures on the Frame Bundle

  • Islam Khan, Mohammad Nazrul
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.791-803
    • /
    • 2021
  • Earlier investigators have made detailed studies of geometric properties such as integrability, partial integrability, and invariants, such as the fundamental 2-form, of some canonical f-structures, such as f3 ± f = 0, on the frame bundle FM. Our aim is to study metallic structures on the frame bundle: polynomial structures of degree 2 satisfying F2 = pF +qI where p, q are positive integers. We introduce a tensor field Fα, α = 1, 2…, n on FM show that it is a metallic structure. Theorems on Nijenhuis tensor and integrability of metallic structure Fα on FM are also proved. Furthermore, the diagonal lifts gD and the fundamental 2-form Ωα of a metallic structure Fα on FM are established. Moreover, the integrability condition for horizontal lift FαH of a metallic structure Fα on FM is determined as an application. Finally, the golden structure that is a particular case of a metallic structure on FM is discussed as an example.

CANAL HYPERSURFACES GENERATED BY NON-NULL CURVES IN LORENTZ-MINKOWSKI 4-SPACE

  • Mustafa Altin;Ahmet Kazan;Dae Won Yoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1299-1320
    • /
    • 2023
  • In the present paper, firstly we obtain the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hyper-cones whose centers lie on a non-null curve with non-null Frenet vector fields in E41 and give their some geometric invariants such as unit normal vector fields, Gaussian curvatures, mean curvatures and principal curvatures. Also, we give some results about their flatness and minimality conditions and Weingarten canal hypersurfaces. Also, we obtain these characterizations for tubular hypersurfaces in E41 by taking constant radius function and finally, we construct some examples and visualize them with the aid of Mathematica.