• 제목/요약/키워드: geometric constraint

검색결과 139건 처리시간 0.025초

비선형 해석을 이용한 강뼈대구조물의 자동화설계 (Automatic Design of Steel Frame Using Nonlinear Analysis)

  • 김창성;마상수;김승억
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.287-294
    • /
    • 2002
  • An automatic design method of steel frames using nonlinear analysis is developed. The geometric nonlinearity is considered by the use of stability functions. A direct search method is used as an automatic design technique. The unit value of each member is evaluated by using LRFD Interaction equation. The member with the largest unit value Is replaced one by one with an adjacent larger member selected in the database. The weight of the steel frame is taken as an objective function. Load-carrying capacities, deflections, interstory drifts, and ductility requirement are used as constraint functions. Case study of a three-dimensional two story frame are presented.

  • PDF

평면 이방성 박판 딥드로잉 공정의 귀발생 예측 (Earing Predictions in the Deep-Drawing Process of Planar Anisotropic Sheet-Metal)

  • 이승열;금영탁;정관수;박진무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 춘계학술대회 논문집
    • /
    • pp.118-128
    • /
    • 1994
  • The planar anisotropic FEM analysis for predicting the earing profiles and draw-in amounts in the deep-drawing processes is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-based unit vectors and the normal contact pressure. the consistent full set of governing relations, comprising equilibrium and geometric constraint equations, is appropriately linearized. Barlat's strain-rate potential is employed, whose in-plane anisotropic properties are taken into account with anisotropic coefficients and potential parameter. The linear triangular membrane elements are used for depicting the formed sheet. with the numerical simulations of deep drawing processes of flat-top cylindrical cup for the 2090-T3 aluminum effects on the earing behavior are examined. Earing predictions made for the 2090-T3 aluminum alloy sheet show good agreement with experiments, although some discrepancies were observed in the directional trend of cup height and thickness strains.

  • PDF

GA를 이용한 Form parameter 방법에 의한 초기선형 생성 (Preliminary Hull Form Generation by Form Parameter Method using GA)

  • 김수영;신성철;신경엽
    • 한국지능시스템학회논문지
    • /
    • 제12권1호
    • /
    • pp.44-51
    • /
    • 2002
  • 본 연구는 선형 생성을 위하여 목적함수로서 fairness 기준을 도입하고 설계변수를 B-spline 곡선의 조정점으로 하며 설계자에 의해서 주어지는 기하학적 제약조건을 만족하도록 하는 최적화를 수행하도록 하였다 본 연구에서는 최적화 방법으로서 GA(Genetic Algorithm)와 최적성 기준(optimality criteria)을 병행하였다.

조정점 최적탐색에 의한 Form Parameter 방법에 관한 연구 (A Study on Form Parameter Method by Optimum Vertex Point Search)

  • 김수영;신성철;김덕은
    • 대한조선학회논문집
    • /
    • 제39권4호
    • /
    • pp.60-65
    • /
    • 2002
  • 본 연구는 Form Parameter를 만족하는 선형 생성 과정을 최적화 과정으로 취급하였다. 목적함수는 fairness 기준을 도입하고 설계변수는 B-spline 곡선의 조정점으로 하며 제약조건은 설계자에 의해서 주어지는 기하학적 형상으로 하였다. 최적화 방법은 GA(Genetic Algorithm)와 최적성 기준(optimality criteria)을 병행하였다.

기본고유진동수 최대화 문제에 있어서 경계조건에 따른 판구조물의 최적두께 분포 (Optimum Thickness Distributions of Plate Structure with Different Essential Boundary Conditions in the Fundamental Frequency Maximization Problem)

  • 이상진;김하룡
    • 한국공간구조학회:학술대회논문집
    • /
    • 한국공간구조학회 2006년도 춘계 학술발표회 논문집 제3권1호(통권3호)
    • /
    • pp.227-232
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

오일러 매개변수를 이용한 해양 세장체 대변위 거동 해석 (Euler Parameters Method for Large Deformation Analysis of Marine Slender Structures)

  • 홍섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.163-167
    • /
    • 2003
  • A novel method for 3-dimensional dynamic analysis of marine slender structure gas been developed by using Euler parameters. The Euler parameter rotation, which is being widely used in aerospace vehicle dynamics and multi-body dynamics, has been applied to elastic structure analysis. Large deformation of flexible slender structures is described by means of Euler parameters. Euler parameter method is implemented effectively in incremental-iterative algorithm for 3D dynamic analysis. The normalization constraint of Euler parameters is efficiently satisfied by means of a sequential updating method.

  • PDF

구부러진 3차원 박판 구조물의 고유 진동수 극대화를 위한 보강재 배치 최적화 (Stiffener Layout Optimization to Maximize Natural Frequencies of a Curved Three-Dimensional Shell Structure)

  • 이준호;박윤식;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.954-957
    • /
    • 2004
  • Based on the authors' previous work, where a geometric constraint handling technique for stiffener layout optimization problem using geometry algorithms was proposed, stiffener layout optimization to maximize natural frequencies of a curved three-dimensional shell structure was performed with a projection method. The original geometry of the shell structure was first projected on a two-dimensional plane, and then the whole optimization process was performed with the projected geometry of the shell except that the original shell structure was used for the eigenproblem solving. The projection method can be applied to baseline structures with a one-to-one correspondence between original and projected geometries such as automobile hoods and roofs.

  • PDF

Video-based Height Measurements of Multiple Moving Objects

  • Jiang, Mingxin;Wang, Hongyu;Qiu, Tianshuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3196-3210
    • /
    • 2014
  • This paper presents a novel video metrology approach based on robust tracking. From videos acquired by an uncalibrated stationary camera, the foreground likelihood map is obtained by using the Codebook background modeling algorithm, and the multiple moving objects are tracked by a combined tracking algorithm. Then, we compute vanishing line of the ground plane and the vertical vanishing point of the scene, and extract the head feature points and the feet feature points in each frame of video sequences. Finally, we apply a single view mensuration algorithm to each of the frames to obtain height measurements and fuse the multi-frame measurements using RANSAC algorithm. Compared with other popular methods, our proposed algorithm does not require calibrating the camera, and can track the multiple moving objects when occlusion occurs. Therefore, it reduces the complexity of calculation and improves the accuracy of measurement simultaneously. The experimental results demonstrate that our method is effective and robust to occlusion.

Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • 제41권6호
    • /
    • pp.775-789
    • /
    • 2012
  • This paper focuses on post-buckling analysis of functionally graded Timoshenko beam subjected to thermal loading by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. The considered highly non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the post-buckling analysis of functionally graded Timoshenko beams under thermal loading considering full geometric non-linearity investigated by using finite element method. The convergence studies are made and the obtained results are compared with the published results. In the study, with the effects of material gradient property and thermal load, the relationships between deflections, end constraint forces, thermal buckling configuration and stress distributions through the thickness of the beams are illustrated in detail in post-buckling case.

가변 휠 메커니즘을 가지는 필드 주행 로봇 설계 (Design of Field-Driving Robot with Variable Wheel Mechanism)

  • 이준성;김영석;김건중;유기호
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.186-190
    • /
    • 2019
  • When problems occurred in the unstable and/or extreme terrain environment, formal field-driving robots were unable to provide any other options such as the transformation of the wheel and body structure, and so on. For such reason, this paper proposed a novel type of integrated wheel mechanism that can be operated as a conventional driving wheel mode and hybrid wheel-leg mode in order to be negotiated in an unstable terrain environment. The mechanical effect of the proposed variable wheel mechanism was analyzed considering the geometric constraint and power requirement of the actuator for the transformation. In addition, we designed and manufactured the prototype of field-driving robot, which reliably control the variable wheel shape. Finally, the effectiveness of the variable wheel mechanism was verified by preliminary experimental approach.