• Title/Summary/Keyword: geometric constants

Search Result 36, Processing Time 0.022 seconds

The Dielectric Characteristics of Transformer Oil due to the Sodium Chloride (I) (염분에 따른 변압기유의 유전특성 (I))

  • 조경순;송병기;이수원;신종열;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.206-210
    • /
    • 1996
  • In order to investigate the electrical properties for transformer oils which contains a Pure sodium chloride, the dielectric properties is made researches. To measure the dielectric loss of specimen, a coaxial cylindrical liquid electrode is used, and its geometric capacitance is confirmed to 16[pF]. And the dielectric dissipation factor, tan$\delta$, is measured by using the Video Bridge 2150. The thermal static oven with an automatically static temperature controller is used so as to support specific temperature to the specimen. This experiments for measuring the dielectric lass is performed at 20-120[$^{\circ}C$] in the temperature range, 30∼1.5x10$\^$5/[Hz] in the frequency range and 300∼1500[mV] in the voltage range. The result of experiment for the movement of carrier and the physical constants to contribute dielectric properties of specimen with a pure sodium chloride.

  • PDF

Scattering by Arbitrary Shaped Grating Covered with Dielectric Slab (유전체로 덮힌 임의 형태 격자구조의 산란)

  • Jo, Ung-Hui;Jo, Yeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.12
    • /
    • pp.9-14
    • /
    • 2000
  • A numerical method for scattering of electromagnetic waves from a arbitrary shaped grating covered with dielectric slab is considered for TE polarization case from the viewpoints of both reflection grating problem and leaky wave antenna problem. The analysis is based on a periodic Green's function and the method of moments. Numerical results involving some combinations of geometric parameters are presented in terms of relative scattered powers of spectral modes and complex propagation constants.

  • PDF

Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method

  • Yaylaci, Murat
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.405-414
    • /
    • 2022
  • In this study, the elastic plane problem of a layered composite containing an internal or edge crack perpendicular to its boundaries in its lower layer is examined using numerical analysis. The layered composite consists of two elastic layers having different elastic constants and heights. Two bonded layers rest on a homogeneous elastic half plane and are pressed by a rigid cylindrical stamp. In this context, the Finite Element Method (FEM) based software called ANSYS is used for numerical solutions. The problem is solved under the assumptions that the contacts are frictionless, and the effect of gravity force is neglected. A comparison is made with analytical results in the literature to verify the model created and the results obtained. It was found that the results obtained from analytical formulation were in perfect agreements with the FEM study. The numerical results for the stress-intensity factor (SIF) are obtained for various dimensionless quantities related to the geometric and material parameters. Consequently, the effects of these parameters on the stress-intensity factor are discussed. If the FEM analysis is used correctly, it can be an efficient alternative method to the analytical solutions that need time.

Nonlinear stability of bio-inspired composite beams with higher order shear theory

  • Nazira Mohamed;Salwa A. Mohamed;Alaa A. Abdelrhmaan;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.759-772
    • /
    • 2023
  • This manuscript presents a comprehensive mathematical model to investigate buckling stability and postbuckling response of bio-inspired composite beams with helicoidal orientations. The higher order shear deformation theory as well as the Timoshenko beam theories are exploited to include the shear influence. The equilibrium nonlinear integro-differential equations of helicoidal composite beams are derived in detail using the energy conservation principle. Differential integral quadrature method (DIQM) is employed to discretize the nonlinear system of differential equations and solve them via the Newton iterative method then obtain the response of helicoidal composite beam. Numerical calculations are carried out to check the validity of the present solution methodology and to quantify the effects of helicoidal rotation angle, elastic foundation constants, beam theories, geometric and material properties on buckling, postbuckling of bio-inspired helicoidal composite beams. The developed model can be employed in design and analysis of curved helicoidal composite beam used in aerospace and naval structures.

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

Study on Geometry Design of Lip-Seal for Automobile Wheel Bearing Considering Drag Torque and Sealing Performance (자동차용 횔베어링의 기동토크와 밀봉성을 고려한 립 씰의 형상 설계에 관한 연구)

  • Huh, Young-Min;Lee, Kwang-O;Sim, Tae-Yang;Kang, Sung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.10-16
    • /
    • 2007
  • A rubber seal for wheel bearing which has been mainly applied to car wheel supporting device is required to have both high sealing performance and drag torque. Because of severe operational conditions like infiltration of mud or splashed water, the importance of rubber seal which is aimed for leakage prevention of grease and effective blocking of foreign substances has been increasing continuously. The sealing performance of this seal depends on several factors such as materials of seal, friction conditions of contact regions and geometry of seals and so on. We have focused on the effects of geometric characteristics such as the angle of main lip, interference between lip edge and inner metallic ring. In this study, the optimization of geometric variables was performed using the finite element analysis. For the sake of finite element analysis, uniaxial tensile tests were conducted and several constants for Mooney-Rivlin's equation were obtained. According to the results of this study, mock-up bearing was made. To verify this study, drag torque and mud spray test were preformed.

Electrical Properties of Transformer Oils (II) (변압기유의 전기적인 특성 (II))

  • Lee, Yong-Woo;Cho, Don-Chan;Shin, Man-Seob;Lee, Soo-Won;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1123-1125
    • /
    • 1995
  • In order to investigate the electrical properties for transformer oils, the dielectric properties and volume resistivity were made researches. To measure the characteristics of dielectric liquid, volume resistivity and dielectric loss, coaxial cylindrical liquid electrode was used, geometric capacitance was confirmed to 16[pF]. Highmegohm meter of VMG-1000 was used for measuring volume resistivity, the appling voltages were DC 100, 250, 500[V] in the temperature range of $20{\sim}100[^{\circ}C]$. Experiments for measuring the dielectric loss were performed at $20{\sim}120[^{\circ}C]$ in temperature range, $30{\sim}1.5{\times}10^5$[Hz] in frequency range and $300{\sim}1500$[mV] in voltage range and then, the result of experiment for the movement of carrier and the physical constants to contribute dielectric properties is introduced.

  • PDF

Electrical Properties of Transformer Oils (III) (변압기유의 전기적인 특성 (III))

  • 이용우;조돈찬;신성권;이재호;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.293-297
    • /
    • 1995
  • In order to investigate the electrical properties of Transformer Oils, Volume Resistivity for transformer oils was made researches. in this paper, the specimen was produced by irradiation of electron beam, which is divided by the dose, 12[Mrad], 24[Mrad], 36[Mrad]. By investigating the electrical properties of dielectric liquid due to the difference of electron beam irradiation the effect of electron beam irradiation was studied. To measure the physcial properties of transformer Oils, Fourier transfer infrared spectroscopy was investigated. And the study for the electrical properties of dielectric liquid was made by measuring volume resistivity of specimen. the Electrode for the measuring Volume resistivity is formed coaxial cylindrical shape, and its geometric capacitance is confirmed to 16[pF]. In this experiments, Highmegohm meter which is model VMG-1000, was used for the measuring volume resistivity. the applying voltages were DC 100, 250, 500, 1000[V] in the temperature range of 20∼120[$^{\circ}C$]. By means of the result from this experiment the movement of carrier and the physcial constants to contribute dielectric properties is introduced.

  • PDF

Physics based basis function for vibration analysis of high speed rotating beams

  • Ganesh, R.;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.21-46
    • /
    • 2011
  • The natural frequencies of continuous systems depend on the governing partial differential equation and can be numerically estimated using the finite element method. The accuracy and convergence of the finite element method depends on the choice of basis functions. A basis function will generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static part of the governing differential equation. However, in the case of a rotating beam, an exact closed form solution for the static part of the governing differential equation is not known. In this paper, we try to find an approximate solution for the static part of the governing differential equation for an uniform rotating beam. The error resulting from the approximation is minimized to generate relations between the constants assumed in the solution. This new function is used as a basis function which gives rise to shape functions which depend on position of the element in the beam, material, geometric properties and rotational speed of the beam. The results of finite element analysis with the new basis functions are verified with published literature for uniform and tapered rotating beams under different boundary conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes to four decimal places for an uniform rotating cantilever beam.

Performance of 3D printed plastic scintillators for gamma-ray detection

  • Kim, Dong-geon;Lee, Sangmin;Park, Junesic;Son, Jaebum;Kim, Tae Hoon;Kim, Yong Hyun;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2910-2917
    • /
    • 2020
  • Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.