• 제목/요약/키워드: geomaterials

검색결과 70건 처리시간 0.018초

Experimental approach to estimate strength for compacted geomaterials at low confining pressure

  • Kim, Byeong-Su;Kato, Shoji;Park, Seong-Wan
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.459-469
    • /
    • 2019
  • It is important to estimate the shear strength of shallow compacted soils as a construction material. A series of constant water content triaxial compression (CWCC) tests under low confining state in this study were performed on compacted geomaterials. For establishing a relationship of the shear strengths between saturated and unsaturated states on compacted geomaterials, the suction stresses were derived by two methods: the conventional suction-measured method and the Suction stress-SWRC Method (SSM). Considering the suction stress as an equivalent confining stress component in the (${\sigma}_{net}$, ${\tau}$) plane, it was found that the peak deviator stress states agree well with the failure line of the saturated state from the triaxial compression test when the SSM is applied to obtain the suction stress. On the other hand, the cavitation phenomenon on the measurement of suction affected the results of the conventional suction-measured method. These results mean that the SSM is distinctly favorable for obtaining the suction value in the CWCC test because the SSM is not restricted by the cavitation phenomenon. It is expected that the application of the SSM would reduce the time required, and the projected cost with the additional equipment such as a pore water measuring device in the CWCC test.

안정처리된 도로하부 지반재료의 강도 및 변형특성 (II) : 수치해석 (Strength and Deformation Characteristics on Stabilized Pavement Geomaterials (II) : Numerical Analysis)

  • 박성완;지종근
    • 한국도로학회논문집
    • /
    • 제11권2호
    • /
    • pp.205-216
    • /
    • 2009
  • 본 논문에서는 기 발표된 연구를 바탕으로 도로하부구조 안정처리기법 적용시 아스팔트 포장에서의 구조적인 거동을 비교 분석하였다. 도로하부재료의 비선형성을 고려한 유한요소법을 활용하여 단축 표준하중 하에서 공용성 지수를 추정하였으며 안정처리된 지반재료의 물리적 역학적 성질들은 실내시험 결과를 통하여 평가되었다. 유한요소 수치해석에 기초한 분석을 통하여 다양한 층두께와 안정제 함량에 따라 포장체에서 변형에 기초한 반응을 분석하였다. 결과 안정처리된 도로에 대한 구조적인 성능은 층두께와 안정제 함량에 따라 많은 영향을 받고 있었으며 결과를 분석하여 조립질 도로하부 안정처리인 경우에 대한 안정처리층의 적정한 두께와 안정제의 최소함량을 각각 제안하였다.

  • PDF

Elaboration and characterization of fiber-reinforced self-consolidating repair mortar containing natural perlite powder

  • Benyahia, A.;Ghrici, M.;Mansour, M. Said;Omran, A.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.1-15
    • /
    • 2017
  • This research project aimed at evaluating experimentally the effect of natural perlite powder as an alternative supplementary cementing material (SCM) on the performance of fiber reinforced self-consolidating repair mortars (FR-SCRMs). For this purpose, four FR-SCRMs mixes incorporating 0%, 10%, 20%, and 30% of natural perlite powder as cement replacements were prepared. The evaluation was based on fresh (slump flow, flow time, and unit weight), hardened (air-dry unit weight, compressive and flexural strengths, dynamic modulus of elasticity), and durability (water absorption test) performances. The results reveal that structural repair mortars confronting the performance requirements of class R4 materials (European Standard EN 1504-3) could be designed using 10%, 20%, and 30% of perlite powder as cement substitutions. Bonding results between repair mortars containing perlite powder and old concrete substrate investigated by the slant shear test showed good interlocking justifying the effectiveness of these produced mortars.

지반재료에서 최근 주목받는 구성모델에 대한 연구 (A Study on the recently noted models for the geomaterials)

  • 김대규;김민정
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 춘계학술논문집 1부
    • /
    • pp.119-121
    • /
    • 2011
  • The proper selection and application of the constitutive model leads to successful prediction of the mechanical behavior for the geomaterials. Three models, which have been recently noted, were chosen and their contents have been briefly and conceptually described in this study.

  • PDF

Micro/macro properties of geomaterials: a homogenization method for viscoelastic problem

  • Ichikawa, Yasuaki;Wang, Jianguo;Jeong, Gyo-Cheol
    • Structural Engineering and Mechanics
    • /
    • 제4권6호
    • /
    • pp.631-644
    • /
    • 1996
  • Geomaterials such as soil and rock are composed of discrete elements of microstructures with different grains and microcracks. The studies of these microstructures are of increasing interest in geophysics and geotechnical engineering relating to underground space development We first show experimental results undertaken for direct observation of microcrack initiation and propagation by using a newly developed experimental system, and next a homogenization method for treating a viscoelastic behavior of a polycrystalline rock.

현장타설말뚝의 하중전이시험 결과를 이용한 IGM 이론의 적용성 평가 (Applicability Evaluation of IGM시s Theory Using the Results of Load Transfer Tests of Drilled Shafts)

  • 천병식;김원철;서덕동;윤우현
    • 한국지반공학회논문집
    • /
    • 제20권6호
    • /
    • pp.29-40
    • /
    • 2004
  • 현장타설말뚝의 지지력에 영향을 미치는 요소로는 말뚝의 길이 및 형상, 주면부 거칠기, 지반 및 말뚝의 탄성계수, 지반의 강도, 구속응력 등이 있으나 기존의 국내ㆍ외 설계기준에서는 이들을 모두 고려한 설계방법이 제시되지 않았다. 또한, 지반을 토사와 암반으로만 분류하여 중간특성을 가진 지반(IGM, Intermediate Geomaterials)에 대한 설계기준이 없어서 지지력 예측값이 다양하게 나타났다. 본 연구에서는 현장타설말뚝의 지지력에 관하여 하중전이 시험 결과를 이용해 기존 및 IGM 이론의 적용성을 비교 평가하였다. 연구 결과 기존의 주요 지지력 산정방법들은 실측치와 비교한 결과 지지력을 과소 평가하고 있었으며, IGM 이론의 경우 지지력 예측결과가 실측치와 잘 일치하고 있음을 보였다.

Durability of self compacted concrete containing slag in hot climate

  • Yahiaoui, Walid;Kenai, Said;Menadi, Belkacem;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.271-288
    • /
    • 2017
  • This paper aims to investigate the effects of replacing cement with ground granulated blast furnace slag (GGBFS) in self compacting concrete in the fresh and hardened state. The performance of SCC in moderate climate is well investigated but few studies are available on the effect of hot environment. In this paper, the effect of initial water-curing period and curing conditions on the performance of SCC is reported. Cement was substituted by GGBFS by weight at two different levels of substitution (15% and 25%). Concrete specimens were stored either in a standard environment (T=$20^{\circ}C$, RH=100%) or in the open air in North Africa during the summer period (T=35 to $40^{\circ}C$; R.H=50 to 60%) after an initial humid curing period of 0, 3, 7 or 28 days. Compressive strength at 28 and 90 days, capillary absorption, sorptivity, water permeability, porosity and chloride ion penetration were investigated. The results show that the viscosity and yield stress are decreased with increasing dosage of GGBFS. The importance of humid curing in hot climates in particular when GGBFS is used is also proved. The substitution of cement by GGBFS improves SCC durability at long term. The best performances were observed in concrete specimens with 25% GGBFS and for 28 days water curing.

Modeling of ultimate value and kinetic of compressive strength and hydration heat of concrete made with different replacement rates of silica fume and w/b ratios

  • Djezzar, Mahdjoub;Ezziane, Karim;Kadri, Abdelkader;Kadri, El-Hadj
    • Advances in concrete construction
    • /
    • 제6권3호
    • /
    • pp.297-309
    • /
    • 2018
  • The objective of this study was to evaluate the influence of silica fume (SF) on the hydration heat and compressive strength of concrete. Portland cement with w/(c+sf) ratios varying between 0.25 to 0.45 was substituted by 10%, 20% and 30% of SF by mass. A superplasticizer was used to maintain a fluid consistency of the concrete. The heat of hydration was monitored continuously by a semi-adiabatic calorimetric method for 10 days at $20^{\circ}C$. Compressive strengths are tested for each mixture until age of 180 days. The results show that silica fume considerably influences the evolution and the ultimate values of the compressive strengths as well as the hydration heat especially for 10% rate. The w/b ratio has a considerable effect where its decrease modifies compressive strength and hydration heat more than silica fume. The correlation of the obtained results allows deducing of ultimate properties as well as the ages to reach half of their values. The correlation coefficients are close to unity and reflect the judicious choice of these relationships to be used to predict compressive strength and hydration heat.

불포화 지반재료의 전단강도정수 추정을 위한 간편법 (A Simple Approach of Estimating the Shear Strength Parameters for Unsaturated Soil-Aggregate Systems)

  • Park, Seong-Wan;Kim, Yong-Rak
    • 한국지반공학회논문집
    • /
    • 제19권3호
    • /
    • pp.75-82
    • /
    • 2003
  • 본 연구에서는 불포화 토질역학 이론에 근거하여 지반재료의 안정처리로 인해 유발되는 전단강도계수의 변화를 추정하는 방법론을 제안하였다. 지반재료의 유효 점착력과 유효 내부마찰각들이 suction측정값들과 일축압축강도 실험결과를 활용하여 추정되었으며, 안정처리제의 사용량에 따른 효과도 비교하였다. 또한 유전상수 측정실험 결과를 통해서 안정처리에 따른 재료의 suction 변화를 알 수 있었으며, 제안된 방법이 불포화 지반재료의 강도정수를 추정할 수 있음을 보여주고 있다.