• Title/Summary/Keyword: geomagnetism

Search Result 24, Processing Time 0.024 seconds

Steering Controller of the Outdoor Autonomous Mobile Robot using MR Sensors

  • Son, Seok-Jun;Kim, Tae-Gon;Kim, Jeong-Heui;Park, Jin-Kyu;Youngcheol Lim;Kim, Eui-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.32.6-32
    • /
    • 2001
  • This paper describes the steering control and geomagnetism cancellation for an autonomous mobile robotusing MR sensors. The magnetic-resistive (MR) sensor obtains the vector summation of the magnetic fields from embedded magnets and the Earth. The robot is controlled by the magnetic fields from embedded magnets. So, geomagnetism is the disturbance in the steering control system. In this paper, we propose a new method of the sensor arrangement in order to remove the geomagnetism and robotbody interference. The proposed method uses two MR sensors located in a level plane and the steering controller has been developed. The controller has three input variables (dBx, dBy, dBz) using the measured magnetic field difference, and an output variable (the steering angle) ...

  • PDF

A Study the Digital Electronic Compass (디지털 전자콤파스에 대한 연구)

  • Yun, Jae-Jun;Choi, Jo-Cheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.245-251
    • /
    • 2005
  • Ship's auto pilot is must necessary the azimuth data, which is supported by a gyro, geomagnetism and GPS compass. The gyro compass is operation of stability & correct , therefore it is used by big size shipping because of high cost. The other side, medium and small size shipping are used the geomagnetism and GPS compass of low cost. This paper have studied that the two jobs are going on at the same time both of there's advantage. Which is asked the algorithm for stability azimuth data on reject methode the defect of respect with geomagnetism & GPS compass.

  • PDF

Steering Control and Geomagnetism Cancellation for an Autonomous Vehicle using MR Sensors

  • Kim, Hong-Reol;Son, Seok-Jun;Kim, Tae-Gon;Kim, Jeong-Heui;Lim, Young-Cheol;Kim, Eui-Sun;Chang, Young-Hak
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.329-336
    • /
    • 2001
  • This paper describes the steering control and geomagnetism cancellation for an autonomous vehicle using an MR sensor. The magneto-resistive (MR) sensor obtains the vector summation of the magnetic fields from embedded magnets and the Earth. The vehicle is controlled by the magnetic fields from embedded magnets. So, geomagnetism is the disturbance in the steering control system. In this paper, we propose a new method of the sensor arrangement in order to remove the geomagnetism and vehicle body interference. The proposed method uses two MR sensors located in a level plane and the steering controller has been developed. The controller has three input variables ($dB_x$, $dB_y$, $dB_z$) using the measured magnetic field difference, and an output variable (the steering angle). A simulation program was developed to acquire the data to teach the neural network, in order to test the ability of a neural network to learn the steering control process. Also, the computer simulation of the vehicle (including vehicle dynamics and steering) was used to verify the steering performance of the vehicle controller using the neural network. From the simulation and field test, good result was obtained and we confirmed the robustness of the neural network controller in a real autonomous vehicle.

  • PDF

Geographical Distribution of Magnetic Elements Deduced from the Results of the First Order Magnetic Survey in Korea (우리 나라 1등 자기측량 성과를 이용한 자장분포식의 결정에 관한 연구)

  • 최윤수;최경제
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.175-184
    • /
    • 1997
  • In this study, the basic theory of geomagnetism was introduced and the field data of first order magnetic survey was analyzed to determine geographical distribution of magnetic elements such as Declination(D), Inclination(1), Horizontal Component(H), Vertical Component(Z) and Total Force(F). From this distribution equations, the distribution of geomagnetism of Korean peninsula was examined and the declination was calculated for National Base Maps.

  • PDF

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes (지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서)

  • Yoon, Sang-Hee;Lee, Seok-Woo;Lee, Young-Ho;Oh, Jong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.

THE STATUS QUO OF THE GEOMAGNETIC FIELD MEASUREMENTS IN KOREA (한국에서의 지구자기장관측의 현황)

  • LIM MU-TAEK;PARK YEONG-SUE;JUNG HYUN-KEY;LEE HEE-IL
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.15-20
    • /
    • 2000
  • The geomagnetic measurements on the Korean Territory began in 1918 in the Incheon (Zinsen in Japanese pronunciation) Observatory of which the annual means of total magnetic field intensity, declination, and inclination still remain for 1918-1944. From 1970s, the National Geography Institute (NGI) and the Radio Research Laboratory (RRL) have tried independently to measure the geomagnetic field continuously. The RRL as the result of such efforts has installed 3 geomagnetic observatories, the first in Icheon and the second in Yongin in 1996, and the third in Jeju in 1997. From 1992, the Korea Institute of Geology, Mining and Materials (KIGAM) has tried also to measure the geomagnetism and as the result they have installed 2 geomagnetic observatories, one in Daejeon in 1998 and the other in Gyeongju in 2000. Nowadays, the RRL and the KIGAM collect the measured data into their own main computers by telecommunication in real time. The two institutions will cooperate in near future to link the two geomagnetic data bases so that the whole set of geomagnetic data measured on Korean Territory could be provided to the end users in Korea.

  • PDF

ATTITUDE CONTROL OF SMALL SCIENTIFIC SATELLITE USING GEOMAGNETISM (지구자기장을 이용한 소형과학위성의 자세조정)

  • 배성구;석재호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.85-98
    • /
    • 1991
  • Geomagnetism was used to control the attitude of the small scientific satellite at low altitude in sun-synchronous orbit. First, we analyzed the telemetry data. The rotation state of the satellite, can be known from the magnitude and variations of the magnetic field which is measured from the 3 axis magnetometer. In axisymmetric case, it is possible to control the attitude of the satellite by changing the rotation velocity of each 3 axis. The algorithm and the program were developed to calculate the supply time of the current operating the magnetorquer. This attitude control can be applied when the satellite is in tumbling motion and after passive control is attained by the Gravity gradient boom.

  • PDF

Development of Positioning System Based on Auto VRS-GPS Surveying

  • Choi, Hyun;Kim, Young-Jong;Park, Woo-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.253-259
    • /
    • 2014
  • There has been a need for replacing human labors with a robot in such dangerous and hard jobs of various construction sites. For that reason, many researches have been made about the high quality robot, which performs its duty instead of human labors. This study is about auto surveying system development based on VRS-GPS which enables autodriving in dangerous areas where it's difficult for humans to measure directly. This study is about the auto-surveying system development, based on VRS-GPS, which enables auto-drive in dangerous areas, whereas difficult for humans to measure directly. The GPS is made with GRXI and SHC250 controllers of the SOKKIA company. The auto surveying system is composed of DPS module, geomagnetism sensor, bluetooth, gimbals, IMU, etc to automatic drive via enter into a route of position. The developed auto surveying system has installed the carmeras for front and vertical axis as well as systems to grasp situation of surveying with smartphone in real time. The result from analysed RMSE of auto surveying system and VRS-GPS surveying is 0.0169m of X-axis and 0.0246m of Y-axis.

Geomagnetism measured in DZN (Daejeon) Geomagnetic Observatory and its time-variation (대전지자기관측소에서 측정된 지자기 값과 시간에 따른 변화)

  • Lim, Mu-Taek;Park, Yeong-Sue;Rim, Hyeong-Rae;Koo, Sung-Bon;Lee, Young-Cheol;Na, Jae-Shin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.353-360
    • /
    • 2007
  • KIGAM has installed a FLARE+ continuous geomagnetic observation system in 1998 in Daejeon of which the IAGA identification code is DZN. The coordinates of the absolute measurement plinth precisely determined by the PDGPS(Post-Processing Differential Global Positioning System) is (127-21-37.19E, 36-22-43.96N, 45.93 m) in WGS84 for the horizontal and from the geoid surface for the vertical. Periodically we have conducted the absolute geomagnetic measurement on the plinth above. We have processed the continuous time-variation 3-axis geomagnetic data measured on arbitrary sensors' coordinates in the observatory and absolute geomagnetic data together to get as the results the time-variation H(orizontal), D(eclination), Z(vertical down), F(scalar calculated from 3 components) and P(Proton Precession Magnetometer Data). We have compared our own data with those calculated from the 10th generation IGRF(International Geomagnetic Reference Field). All the measured data in the DZN Observatory can be acquired through the website http://geomag.kigam.re.kr.

  • PDF

Electromagnetic Consideration on the Source of Geomagnetism (지자기 성인의 전자기학적 고찰)

  • Soh, Dea-Wha
    • Journal of the Speleological Society of Korea
    • /
    • no.79
    • /
    • pp.41-46
    • /
    • 2007
  • 지구자기장의 성인에 대하여 고찰하고 기존 학설에 대한 신 모델을 제안하였다. 지자기 성인의 가장 유력한 이론적 모델은 열전류와 열화학적 전류에 의한 자기장 형성이다. 하지만, 이 모델은 매우 한정적 조건을 바탕으로 설명하고 있으며, 동시에 지자기의 분산과 세기의 상쇄 요인을 내포하고 있기 때문에 설득력이 저하된다. 그러나 본 제안의 가설에서 주장하는 이온층 전류에 의한 지자기의 성인은 그와 같은 분산 요인이 있을 수 없으며, 그 결과로 나타나는 지자기의 새기와 방향도 일정하게 형성됨이 해석 가능하기 때문에 타당성과 설득력이 높은 완벽한 이론이다. 따라서 이온층 전류에 의한 보다 안정적인 지자기성인의 전자기학적 신 모델을 제안한다.