• Title/Summary/Keyword: geomagnetic

Search Result 386, Processing Time 0.025 seconds

Archaeomagnetic Secular Variation of the Neolithic Age in Korea: Focusing on the Mid-Western Region Sites (한반도 신석기시대의 고고지자기 변동: 중서부지역 유적을 중심으로)

  • Sung, Hyong Mi
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • It is not known in details for the A.D. period as the archaeomagnetic dating method to be fully facilitated in Korea but it has prepared for the revised shape of standard curve to trace the geomagnetic field variation, and there were cases to increase the survey on relics on the B.C. period to find out for the detailed archaeomagnetic field variation on the Bronze Age to the Early Iron Age. Furthermore, the survey cases on the relics on the Neolithic Age began to emerge a little by little archaeomagnetic field variation of the Neolithic Age through 34 pieces of the archaeomagnetic measurement data as making active advancement around mid-western region. Data is insufficient yet that it is difficult to find out the detailed trend of modification but it is estimated for approximate appearance. The archaeomagnetic field variation of the Neolithic Age made changes without breaking away from the scope of changes in the A.D. period as in the same way with the Bronze Age, and comparing to the variation of archaeomagnetic field for the Bronze Age, the magnetic inclination shifted within the scope of having almost no difference, but the declination is shown to skewed toward the east in its overall appearance. In addition, the comparison was made with the data of the Jomon Age in Japan and the archaeomagnetic measurement data of Korea has a little bit more depth for while the declination is skewed toward the east for 10 degree or more compared to those of Japan. However, in the part where the data is concentrated most intensely, the data for both countries has significant part to overlap to each other that the archaeomagnetic field variation of the Neolithic Age of Korea showed overall similar variation with certain partial changes when compared to those of Japan.

ACQUISITION OF THE FLIGHT INFORMATION USING THE KSR-3 MAGNETOMETER (KSR-3 탑재 자력계를 이용한 비행정보 획득 연구)

  • Kim, Sun-Mi;Jang, Min-Hwan;Lee, Dong-Hun;Han, Young-Seok;Kim, Jun;Hwang, Seung-Hyun;Lee, Eun-Seok;Lee, Sun-Min;Kim, Hyo-Jin;Lee, Su-Jin
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.29-42
    • /
    • 2003
  • The KSR-3 magnetometers consist of the fluxgate magnetometer (MAG/AIM) for acquiring the rocket flight attitude information, and the search-coil magnetometer (MAG/SIM) for the observation of the Earth's magnetic fluctuations. The position (latitude, longitude, and height) and flight condition (the transformation angle) of the rocket is measured after the data based on these two magnetometers are compared with IGRF The gap in the vector of magnetic field between the position of the launching point and an impact point is taken into account in data reduction. Angular variation of pitch, yaw, and roll can be researched when the data is applied to the coordinate system of the rocket.

Paleomagnetic Study of the Daedong Group in the Choongnam Coal Field (충남탄전에 분포하는 대동층군에 대한 고지자기학적 연구)

  • Min, Kyung Duck;Um, Jeong-Gi;Kim, Dong Wook;Choi, Yong Hoon;Lee, Youn Soo;Nishimura, Susumu
    • Economic and Environmental Geology
    • /
    • v.25 no.1
    • /
    • pp.87-96
    • /
    • 1992
  • Paleomagnetic study on the sedimentary rocks in the Choongnam Coal Field has been carried out to determine the direction of declination and inclination of NRM and position of paleomagnetic pole, and to investigate the geotectonism and geomagnetic stratigraphy of the sedimentary rocks in the Daedong Group. As a result of paleomagnetic study, the study area can be divided tectonically into two blocks by Baegunsa fault, namely northwestern and southeastern blocks. Site mean declination and inclination of Baegunsa and Seoungjuri Formations in the northwestern block are $23.2^{\circ}$ and $54.9^{\circ}$, respectively. Those of Amisan, Jogyeri, Baegunsa and Seoungjuri Formations in the southeastern block show normal direction with declination and inclination of $-22.1^{\circ}$ and $11.2^{\circ}$, and reversed direction with those of $158.5^{\circ}$ and $-12.6^{\circ}$, respectively. Average paleomagnetic pole position in the northwestern block is located at $212.9^{\circ}E$ and $71.1^{\circ}N$, and that in the southeastern block at $345.7^{\circ}E$ and $53.3^{\circ}N$. This difference suggests relative rotation of about $45^{\circ}$ between two blocks. The paleolatitude of Daedong Group at the time of sedimentation is $5.6^{\circ}N$ much lower than present latitude of $37.7^{\circ}N$. Compared with worldwide Mesozoic paleomagnetic polarity stratigraphy, Amisan Formation is correlated with the lower boundary of Nuanetsi reversal zone in Graham interval, and Baegunsa and Seoungjuri Formations are correlated with just upper part of the upper boundary of Nuanetsi reversal zone, and their geologic ages are Late Triassic to Early Jurassic. The position of paleomagnetic pole acquired from Daedong Group in the study area is different from those in other places. This may be attributed to the different tectonic movement by Daebo Orogeny occurred after the deposition of Daedong Group.

  • PDF

A Study of the Apply Proximity Sensor for Improved Reliability Axle Detection (열차 차축검지 신뢰성 향상을 위한 근접센서 방식 Axle Counter 적용 연구)

  • Park, Jae-Young;Choi, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5534-5540
    • /
    • 2015
  • This In the railway signaling system, applications of axle counter in addition to track circuit goes on increasing for detecting train position. Consequently, this paper compares sensor methods of axle counter with between geo-magnetism method and proximity sensor method. And it presents differences and results, to improve reliabilities of train detection and axle counting. Also, this article presents an applied result which is based on field experience, with regard to installation, considering attachment condition of sensor part for accurate axle counting. This study acquires expandability that is able to perform not only axle counting function but also various other functions (direction detection of train, speed detection of train, and so on). It was a result of a change of design in order to judge phase difference of sensors, to improve reliability of axle counting. Furthermore, it does not subordinate to characteristics (type, weight of train). And it is confirmed that the omission of axle counting was not occurred in 350km/h. This was the result of Lab test after the construction of transfer equipment of trial axle and Test Bed for axle counting. Both of them are self-productions. Through this, it prepares foundation which is able to apply not only to train detection but also to speed of passing trains, formation number of trains, detector locking condition - when the train passes the section of switch point, and level crossing devices. Furthermore, it would be judged to contribute safety train operation if proximity sensor method applies to the whole railway signaling system from now on.

Electrical resistivity and seismic reflection mapping for the southeastern part of the Yongdong basin (Cretaceous), Korea (영동분지(백악기) 남동부의 전기비저항 및 탄성파탐사자료 해석)

  • Kim, Ji-Su;Han, Su-Hyeong;Lee, Cheol-U;Kim, Bok-Cheol;Yang, U-Heon;Son, Ho-Ung;Son, Yeong-Gwan
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.77-90
    • /
    • 2000
  • Five electrical resistivity dipole-dipole and two seismic reflection surveys were performed in the southeastern margin of the Yongdong basin to delineate the shallow basin architecture. To investigate the intra-basin structure, twenty four resistivity sounding points and three dipole-dipole lines were selected especially in the vicinity of volcanic masses. The basin-fault boundaries are identified in electrical dipole-dipole resistivity section as high resistivity-contrast of approximately $1,500\;{\Omega}{\cdot}m$, characterized as a band of high standard-deviation. They are also effectively clarified in the seismic reflection data: amplitude and continuity contrasts in the common shot gather, first-arrival profiles, complex attribute plots. The intra-basin resistivity structures are constructed by interpolating vertical electrical sounding data and dipole-dipole profiles. The high-resistivity anomalies most likely originate from the northsouth-trending and northeast-dipping volcanic masses, which are to be further quantitatively investigated with geomagnetic and magnetotelluric surveys.

  • PDF

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.

Design of a Compact GPS/MEMS IMU Integrated Navigation Receiver Module for High Dynamic Environment (고기동 환경에 적용 가능한 소형 GPS/MEMS IMU 통합항법 수신모듈 설계)

  • Jeong, Koo-yong;Park, Dae-young;Kim, Seong-min;Lee, Jong-hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.68-77
    • /
    • 2021
  • In this paper, a GPS/MEMS IMU integrated navigation receiver module capable of operating in a high dynamic environment is designed and fabricated, and the results is confirmed. The designed module is composed of RF receiver unit, inertial measurement unit, signal processing unit, correlator, and navigation S/W. The RF receiver performs the functions of low noise amplification, frequency conversion, filtering, and automatic gain control. The inertial measurement unit collects measurement data from a MEMS class IMU applied with a 3-axis gyroscope, accelerometer, and geomagnetic sensor. In addition, it provides an interface to transmit to the navigation S/W. The signal processing unit and the correlator is implemented with FPGA logic to perform filtering and corrrelation value calculation. Navigation S/W is implemented using the internal CPU of the FPGA. The size of the manufactured module is 95.0×85.0×.12.5mm, the weight is 110g, and the navigation accuracy performance within the specification is confirmed in an environment of 1200m/s and acceleration of 10g.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Quaternary Geology and Paleoecology of Hominid Occupation of Imjin Basin (임진강유역 구석기 공작의 고생태학적 배경)

  • Seonbok Yi
    • The Korean Journal of Quaternary Research
    • /
    • v.2 no.1
    • /
    • pp.25-50
    • /
    • 1988
  • The survival of rich evidence of palaeolithic occupation found in the Imjin-Hant'an River basin was possible due to many fortuitous geological conditions provided there. Formation of the basalt plain in a narrow valley system which developed during the late Mesozoic insured the appearance of a basin of sedimentation in which archaeological sites would be preserved with relatively minor post-depositional disturbance. Geomagnetic and K-Ar dating indicates that lava flows occurred during the Brunes Normal Epoch. During and after the process of basin sedimentation, erosion of the plain was confined to the major channel of the present river system which developed along the structural joints formed by the lava flow. Due to characteristic columnar structure and platy cleavage of the basalt bedrock, erosion of the basalt bedrock occurred mainly in vertical direction, developing deep but narrow entrenched valleys cut into the bedrock. Consequently, the large portion of the site area remained intact. Cultural deposits formed on top of the basalt plain were left unmodified by later fluvial disturbances due to changes in the Hant'an River base-level, since they were formed about 20 to 40m above the modern floodplain. Sedimentological evidence of cultural deposits and palynological analysis of lacustrine bed formed in the tributary basin of the Hant'an River indicate that hominid occupation occurred in this basin under rapidly deteriorating climatic conditions. From three thermoluminescence dates, the timing of hominid occupation as represented by 'Acheulian-like' bifaces apparently occur sometime during 45,000 BP. Thus, deposition of cultural layers in this basin approximately coincides with the beginning of the second stadial of the final glacial, during which the Korean Peninsula must have had provided a sanctuary for prolonged human occupation.

  • PDF