• Title/Summary/Keyword: geomagnetic

Search Result 383, Processing Time 0.044 seconds

Ionospheric Modeling using Wavelet for WADGPS (Wavelet을 이용한 광역보정위성항법을 위한 전리층 모델링)

  • Sohn, Kyoung-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.371-377
    • /
    • 2007
  • Ionospheric time delay is one of the main error source for single-frequency DGPS applications, including time transfer and Wide Area Differential GPS (WADGPS). Grid-based algorithm was already developed for WADGPS but that algorithm is not applicable to geomagnetic storm condition in accuracy and management. In geomagnetic storm condition, the spatial distribution of vertical ionospheric delay is noisy and therefore the accuracy of modeling become low in grid-based algorithm. For better accuracy, function based algorithm can be used but the continuity of correction message is not guranteed. In this paper, we propose the ionospheric model using wavelet based algorithm. This algorithm shows better accuracy with the same number of correction message than the existing spherical harmonics algorithm and guarantees the continuity of correction messages when the number of message is expanded for geomagnetic storm condition.

  • PDF

SEASONAL AND UNIVERSAL TIME VARIATIONS OF THE AU, AL AND DST INDICES

  • AHN BYUNG-HO;MOON GA-HEE
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.93-99
    • /
    • 2003
  • Various attempts have been made to explain the: pronounced seasonal and universal time (UT) variations of geomagnetic indices. As one of such attempts, we analyze the hourly-averaged auroral electroject indices obtained during the past 20 years. The AU and AL indices maximize during summer and equinoctial months, respectively. By normalizing the contribution of the solar conductivity enhancement to the AU index, or to the eastward electrojet, it is found that the AU also follows the same semiannual variation pattern of the AL index, suggesting that the electric field is the main modulator of the semiannual magnetic variation. The fact that the variation pattern of the yearly-mean AU index follows the mirror image of the AL index provides another indication that the electric field is the main modulator of magnetic disturbance. The pronounced UT variations of the auroral electrojet indices are also noted. To determine the magnetic activity dependence, the probability of recording a given activity level of AU and AL during each UT is examined. The UT variation of the AL index, thus obtained, shows a maximum at around 1200-1800 UT and a minimum around 0000-0800 UT particularly during winter. It is closely associated with the rotation of the geomagnetic pole around the rotational axis, which results in the change of the solar-originated ionospheric conductivity distribution over the polar region. On the other hand the UT variation is prominent during disturbed periods, indicating that the latitudinal mismatch between the AE stations and the auroral electrojet belt is responsible for it. Although not as prominent as the AL index, the probability distribution of the AU also shows two UT peaks. We confirm that the Dst index shows more prominent seasonal variation than the AE indices. However, the UT variation of the Dst index is only noticeable during the main phase of a magnetic storm. It is a combined result of the uneven distribution of the Dst stations and frequent developments of the partial ring current and substorm wedge current preferentially during the main phase.

Identifying the plasmapause locations for periods under unusually prolonged and weaker solar conditions

  • Cho, Junghee;Lee, Dae-Young;Shin, Dae-Kyu;Kim, Jin-Hee;Park, Mi-Young;Kim, Thomas Kyoung-Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.93.1-93.1
    • /
    • 2013
  • The Earth's radiation belts consist of an inner belt and an outer belt, being separated by the slot region. It is well known that the variations of the inner edge of the outer belt and the location of the plasmapause (Lpp) are closely related to each other. Different waves exist inside and outside the plasmasphere, playing different roles in the particle dynamics. The plasmapause is well known to be influenced by solar wind conditions and geomagnetic disturbances. Therefore, it is important to precisely determine the location of the plasmapause and develop a prediction scheme. In this study, we identified the location of the plasmapause using the plasma density data from the Time History of Events and Macroscale Interactions During Substorms (THEMIS). The plasmapause is determined by requiring density gradient of a factor of 15 within L-change = 0.5. We statistically determined Lpp as a function of preceding geomagnetic indices. Also, we determined the relations between Lpp and preceding solar wind conditions by estimating correlation coefficients. These relations give us predicting models of Lpp as a function of preceding solar wind parameters and geomagnetic indices. As our database covers a period over the ascending phase from near-sunspot minimum, our statistical results differ somewhat from previous works that cover near-sunspot maximum. Finally, we give some comparative examples obtained from the Van Allen Probes data.

  • PDF