• Title/Summary/Keyword: geology unit

Search Result 178, Processing Time 0.025 seconds

Groundwater Investigation in Northwestern Part of Saudi Arabia (Saudi Arabia 북서부의 지하수조사)

  • 한정상;정수웅
    • Water for future
    • /
    • v.8 no.2
    • /
    • pp.30-40
    • /
    • 1975
  • Hydrogeological survey and geophysical prospecting have been carried out in Saudi Arabia for the purpose of finding groundwater in the soil and rock at the request of General trading company in Jeddah, Saudi Arabia. The surveyed area is located on $38^{\circ}-39^{\circ}$ 30' in longitude and $26^{\circ}-26^{\circ}$ 30' in latitude. The topography of this area is dominated by northwest southeast mountain range composed mostly of precambrian rocks and basalt of tertiary period. Geology is mainly composed of greenstone, granite, andesite, diorite rhyolite of pre-cambrian era and sandstone of cambrian period which are underlained by basalt and andesite of tertiary period and alluvium of quaternary unconformably. The instruments used in this investigation are TR-18B2 radioactivity unit which isjapanese patented and A.C. Terrameter, a resistivity meter manufactured by ABEM of Stockholm, Sweden. Radioactivity method has been conducted along the Alula-Khaybar road, totally 164Km by the car-borne. As a result of the above survey 16 places have been selected and these anomalies show 1.2N-1.6N compared to background of each area in intensity with width of 10-50m. Resistivity vertical profiling which made use of Schlumberger configuration method has been made over selected areas by radioactivity method to provide hydrogeological information for a water resources survey. The result of resistivity shows that good aquifers are located in the western part of surveyed area where sedimentary rock is distributed. The strata showing 10-50, ${\Omega}-m$ in resistivity are thought to be waterbearing layer. The variations in aquifer resistivity found, are thought to be due to verying clay content, which could be related to aquifer yield. It has proved impossible to detect small salinity variation in the buried aquifer by geophysics. As a result of resistivity prospecting 10 places are recommended to be drilled at the anomalies as shown attached map. yields from the proposed holes have been estimated approximately from $20m^3$ to $200m^3$ per day. Prior to drilling for groundwater, test boring using ${\c}4"$ should be drilled in order to obtain more reliable hydrogeological information for the construction of perfect wells.ells.

  • PDF

A study on construction simulation of road tunnel using Decision Aids for Tunneling (DAT) (터널의사결정체계 (DAT)를 이용한 도로터널의 시공 시뮬레이션 연구)

  • Min, Sangyoon;Kim, Taek Kon;Einstein, H.H.;Lee, Jun S.;Kim, Ho Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.161-174
    • /
    • 2003
  • Applicability of the Decision Aids for Tunneling (DAT) technique is investigated in this study to better understand the efficiency of the decision making process during tunnel construction. For this, a traffic tunnel under construction is adopted and information on the construction procedure, i.e., overall geology, unit cost and construction time for each excavation process, is provided periodically. Various scattergrams in which cost-time simulation results are plotted are obtained according to the simulation methods and final prediction on the construction time/cost is made. It is found that the uncertainty in the cost distribution is greater than the uncertainty in the time distribution for each cycle simulation and the uncertainties in time and cost for the one time simulations are comparable. Future work will be concentrated on the updating scheme using the face mapping data and various parametric studies will also be performed.

  • PDF

Lithology and Geology of Deokjeok Island, Western Gyeonggi Massif, Central Korea (서부 경기육괴에 위치한 덕적도의 암상과 지질)

  • Aum, Hyun Woo;Kim, Yoonsup;Cheong, Wonseok
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.263-272
    • /
    • 2013
  • We investigated the lithology and petrography of granites and metasedimentary rocks in Deokjeok Island at the western margin of the Gyeonggi massif. The major lithology comprises the biotite granite that intrudes all other types of rocks. A minor amount of mylonitized porphyritic granite crops out along the southeastern coast. Metasedimentary rocks in the north are further divided into: (1) sheared quartzite-schist to the northeast; and (2) relatively less-deformed, low-grade metasedimentary rocks to the northwest. The former contains quartz grains showing undulatory extinction and subgrain aggregates as well as minor amount of primary chlorite and biotite in the muscovite-rich matrix. Metamorphic condition belongs to the greenschist facies or the biotite zone. On the other hand, the latter unit consists of meta-conglomerate, meta-sandstone, meta-pelite, and black slate. Regardless of the lithology, the intensity of deformation apparently increases eastward to develop the flow banding of quartz in the shear zone.

Analysis of Ecodiversity as the Foundation for Conserving Biodiversity and Its Restoration Strategy (생물다양성을 보존하기 위한 토대로서 생태다양성 분석 및 복원 전략)

  • Lim, Bong Soon;Kim, Dong Uk;Kim, A Reum;Seol, Jae Won;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.408-426
    • /
    • 2020
  • This study aims to establish the national strategy for biodiversity conservation by analyzing the current status of ecodiversity as the foundation of biodiversity conservation. Furthermore, this study has another purpose of preparing the measures for conservation and restoration of biodiversity. Ecodiversity was discussed as the basis for conserving biodiversity. Five climate zones and 14 climatic regions, eight plant geographic regions, three massifs and major geologic series, horizontal and vertical topographic conditions, 16 ecoregions, major ecosystems including forest, river and streams, wetlands, coast and marine, agriculture, and urban esosystems, and land use types were discussed as the element of the ecodiversity. In terms of biodiversity conservation, the actual conditions of each ecological unit were reviewed and measures were proposed to reduce biodiversity loss. Destruction and fragmentation of habitat, poor ecosystem management due to socioeconomic changes, the effects of exotic species and chemicals, and climate change were discussed as the major factors causing biodiversity loss. Systematic monitoring based on scientific principles and ecological restoration based on those monitoring results were recommended as measures for biodiversity conservation.

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea (국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Choo, Chang Oh;Kim, Woo-Seok;Seo, Yong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.109-126
    • /
    • 2015
  • Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.

Development and Application of Geological Field Study Sites in the Area of Igneous Rocks (화성암 지역의 야외지질학습장 개발 및 적용)

  • Kim, Hwa Sung;Ham, Ho Shik;Lee, Moon Won
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.274-285
    • /
    • 2013
  • The purpose of this study was to develop geological field study sites for learning topography and geology of the area with igneous rocks, specifically in Duibaejae volcanic edifice and Seonang-bawi that were distributed in Goseong-gun, Gangwon-do area. As a follow up, we conducted a study to examine the effect of the study sites when applied to high school freshmen Earth science course. The study proceeded based on the Orion's model in the order of preparatory unit, field trip, and summary unit. The geological field study sites were developed based on the geological study elements presented in the Korean Earth science curriculum. Before the field trip, students simply memorized factual knowledge on minerals, rocks and etc., and showed very low level of understanding on the formation process of the region that was distributed with granite and basalt. Especially, their understanding showed that granite and basalt were formed from the same magma at the same time. After the field trip, they increased in-depth level of understanding about minerals, rocks, and geological structures, but were not able to explain the topographical characteristics of the two rocks because they did not recognize the times of the creation of granite and basalt. The reason is that they have learned the simple concept of the process of forming granite and basalt in their middle school, but that they have not learned the meaning of the difference between two the geological eras when each of the two rocks, granite and basalt, were formed.

Study on the Dissolution of Sandstones in Gyeongsang Basin and the Calculation of Their Dissolution Coefficients under CO2 Injection Condition (이산화탄소 지중 주입에 의한 경상분지 사암의 용해반응 규명 및 용해 반응상수값 계산)

  • Kang, Hyunmin;Baek, Kyoungbae;Wang, Sookyun;Park, Jinyoung;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.661-672
    • /
    • 2012
  • Lab scale experiments to investigate the dissolution reaction among supercritical $CO_2$-sandstone-groundwater by using sandstones from Gyeongsang basin were performed. High pressurized cell system (100 bar and $50^{\circ}C$) was designed to create supercritical $CO_2$ in the cell, simulating the sub-surface $CO_2$ storage site. The first-order dissolution coefficient ($k_d$) of the sandstone was calculated by measuring the change of the weight of thin section or the concentration of ions dissolved in groundwater at the reaction time intervals. For 30 days of the supercritical $CO_2$-sandstone-groundwater reaction, physical properties of sandstone cores in Gyeongsang basin were measured to investigate the effect of supercritical $CO_2$ on the sandstone. The weight change of sandstone cores was also measured to calculate the dissolution coefficient and the dissolution time of 1 g per unit area (1 $cm^2$) of each sandstone was quantitatively predicted. For the experiment using thin sections, mass of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased, suggesting that plagioclase and calcite of the sandstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites. 0.66% of the original thin sec-tion mass for the sandstone were dissolved after 30 days reaction. The average porosity for C sandstones was 8.183% and it increased to 8.789% after 30 days of the reaction. The average dry density, seismic velocity, and 1-D compression strength of sandstones decreased and these results were dependent on the porosity increase by the dissolution during the reaction. By using the first-order dissolution coefficient, the average time to dissolve 1 g of B and C sandstones per unit area (1 $cm^2$) was calculated as 1,532 years and 329 years, respectively. From results, it was investigated that the physical property change of sandstones at Gyeongsang basin would rapidly occur when the supercritical $CO_2$ was injected into $CO_2$ sequestration sites.

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).

The Occurrence and Origin of a Syn-collisional Mélange in Timor (티모르섬 충돌 동시성 멜란지의 산상 및 기원)

  • Park, Seung-Ik;Koh, Hee Jae;Kim, Sung Won;Kihm, You Hong
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • The Bobonaro m$\acute{e}$lange is one of the youngest syn-collisional m$\acute{e}$langes, located between the Indo-Australian and Eurasian plates. The m$\acute{e}$lange has formed in association with a collision between the Australian continental margin and the Banda arc initiated in Neogene. The Suai area at the southern part of Timor is a good place to examine the genetic relationship between the m$\acute{e}$lange and other rock sequences because various tectonostratigraphic units coexist in the area. In this study, we present the structural characteristics and spatial distribution of the Bobonaro m$\acute{e}$lange investigated as a part of 1:25K scale geologic mapping in the area, and discuss on the origin of the m$\acute{e}$lange. The Bobonaro m$\acute{e}$lange in the Suai area is composed of unmetamorphosed clay matrix and blocks of various lithologies. The clay matrix mainly is reddish brown or greenish gray in colour, and has scaly texture. Most blocks are allochthonous, but mostly derived from nearby formations. Based on the internal structure and relationship with surrounding rocks, the Bobonaro m$\acute{e}$lange is genetically classified into 1) diapiric m$\acute{e}$lange; 2) tectonic m$\acute{e}$lange; and 3) broken formation. The spatial distribution of the Bobonaro m$\acute{e}$lange indicates that it intruded all pre-collisional units including the lower Australian continental margin unit(Gondwana megasequence) and the Banda arc unit. Taking the field evidences and previous genetic models into consideration, the Bobonaro m$\acute{e}$lange is interpreted to be mainly formed as a diapiric m$\acute{e}$lange originated from Gondwana megasequence, consistently effected by faulting events. This study reflects that diapiric m$\acute{e}$lange is a significant component in recent accretionay-collision belts. It suggests that diapiric process should be considered as a main genetic factor even in ancient m$\acute{e}$lange.

Suggestions of Stone Materials for Restoration of Gwanghwamun Woldae in Seoul Based on Lithological Study (암석학적 연구를 통한 서울 광화문 월대 복원용 석재 제안)

  • Myeong Seong Lee;Yu Bin Ahn;Se Rin Park;Myoungju Choie;Jiyoung Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.647-659
    • /
    • 2023
  • This study is to analyze the lithological similarities between railing stones of Gwanghwamun Woldae and stone blocks stored in Donggureung Royal Tombs, Guri, to interpret the provenance of the stones, and to suggest the most suitable quarry for a new stones supply among the rocks in the Seoul-Pocheon area in order to select stones for the restoration of the Gwanghwamun Woldae. The railing stones in Donggureung are medium to coarse-grained pink biotite granite, and their lithological characteristics, magnetic susceptibility(Average 5.20 ×10-3 SI unit), and gamma spectrometer data(K 5.00~6.38%, U 4.92~8.56 ppm, Th 27.60~36.44 ppm) show similarities with the remaining railing stones in Gwanghwamun Woldae(Average 5.38). Therefore, the railing stones in Donggureung can be reused for the restoration of Gwanghwamun Woldae. They have similar lithological and geochemical charateristics to the pink biotite granite found the Suraksan Mt. and Buramsan Mr. areas in Seoul, suggesting that these areas are the source of the stone. However, since the Suraksan Mt. and Buramsan Mt. areas are currently unavailable for quarrying, lithological and geochemical analyses on granite from the Yangju and Pocheon areas are conducted to determine the suitability of the new stone for restoration. As a result, a pink biotite granite similar to the Woldae stones was identified in the Pocheon area, and it is suggested that the stones similar in grain size and colour to the railing stones of Gwanghwamun Woldae should be selected and used for the restoration of Gwanghwamun Woldae.