• Title/Summary/Keyword: geological properties

Search Result 393, Processing Time 0.028 seconds

Engineering Problems in Rock Discontinuity (암반 불연속면의 공학적 문제-(General Report))

  • 신희순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-184
    • /
    • 2001
  • Rock masses usually contain such features as bedding planes, faults, fissures, fractures, joints and other mechanical defects which, although formed from a wide range of geological processes, posses the common characteristics of low shear strength, negligible tensile strength and high fluid conductivity compared with the surrounding rock material. In the engineering context here, the discontinuities can be the single most important factor governing the deformability, strength and permeability of the rock mass. Moreover, a particularly large and persistent discontinuity could critically affect the stability of any surface or underground excavation. For these reasons, it is necessary to develop a thorough understanding of the geometrical, mechanical and hydrological properties of discontinuities and the way in which these will affect rock mechanics and hence rock engineering.

  • PDF

Flood Discharge to Decision of Parameters in Han Stream Watershed (한천유역의 홍수량 산정을 위한 HEC-HMS 모형의 민감도 분석)

  • Jung, Woo-Yul;Yang, Sung-Kee;Kim, Dong-Su
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.533-541
    • /
    • 2014
  • The streams in Jeju Island have very distinctive hydrological and geological properties and there are a lot of limits in applying the general flood estimation method. This study presented parameters dominant in the Hancheon stream of Jeju Island by analyzing the sensitivity of parameters of HEC-HMS model regarding rainfall events in the target basin, and extracted the optimal parameter(Time of Concentration of Clark Unit Hydrograph: Kraven II method, Storage Coefficient: Sabol method) by analyzing and comparing it with the flood runoff data observed in the site and Jeju Island's observation data.

The Characteristice of Safety on a Slope of Pyroclastic Rock (화산쇄설암 사면의 안정 특성)

  • Kim, Byoung-Gon;Park, Sung-Kwon;Choi, Kil-Hyun;Baek, Seung-Cheol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.557-560
    • /
    • 2008
  • In this paper, it discusses about the stability of rock slope of pyroclastic rock, which can easily meet at construction site. Basically carry out the investigation about the development of a surface of discontinuity, too. With that, it refers to the basic groups of sedimentary rock, treats of general details about investigation of rock slope and stability analysis, and discusses general characteristics and stability analysis case study about rock slope of pyroclastic rock. Achieved basic geological investigation on rock slope of pyroclasic rock, and examine the stability of slope by doing limit equilibrium and geometric stability analysis due to the result of investigation. It is considered to be able to accumulate many data about slope design of pyroclastic rock hereafter estimating degrees of rock mass properties of pyroclastic rock quantitatively.

  • PDF

Influence of explosives distribution on coal fragmentation in top-coal caving mining

  • Liu, Fei;Silva, Jhon;Yang, Shengli;Lv, Huayong;Zhang, Jinwang
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.111-119
    • /
    • 2019
  • Due to certain geological characteristics (high thickness, rocky properties), some underground coal mines require the use of explosives. This paper explores the effects of fragmentation of different decks detonated simultaneously in a single borehole with the use of numerical analysis. ANSYS/LS-DYNA code was used for the implementation of the models. The models include an erosion criterion to simulate the cracks generated by the explosion. As expected, the near-borehole area was damaged by compression stresses, while far zones and the free surface of the boundary were subjected to tensile damage. With the increase of the number of decks in the borehole, different changes in the fracture pattern were observed, and the superposition effects of the stress wave became evident, affecting the fragmentation results. The superposition effect is more evident in close distances to the borehole, and its effect attenuates when the distance to the borehole increase.

The Effect of Soil on the Fundamental Properties of Mortar in Fine Aggregate (잔골재 중 토분이 모르타르의 기초적 특성에 미치는 영향)

  • Sin, Se-Jun;Lee, Jea-Hyeon;Park, Kyung-Teak;Park, Min-Yong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.83-84
    • /
    • 2019
  • Recently, the supply and demand of aggregates has become difficult due to various practical constraints such as depletion of natural aggregate resources and tightening environmental regulations. As a result, aggregates such as selective crushed aggregates and river aggregates are now distributed to the construction market. In particular, among the aggregates distributed in the country, selective crushed aggregates that have been used recently are characterized by the fact that the quality of the raw material is not uniform and is based on geological characteristics. Such bad aggregates can affect the overall performance of the concrete and shorten the life of the structure. Therefore, in this study, in order to improve such problems, we want to analyze the effect of aggregate powder on mortar.

  • PDF

A review of chromatographic analysis for rare-earth elements with focus on Ln resin

  • Jihye Kim;Kihwan Choi
    • Analytical Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.259-266
    • /
    • 2023
  • The demand for rare-earth elements (REEs) is increasing owing to their significance as prominent materials in electronics, high-tech industries, geological research, nuclear forensics, and environmental monitoring. In general, the utilization of REEs in various applications requires the use of chromatographic techniques to separate individual elements. However, REEs have similar physicochemical properties, which makes them difficult to separate. Recently, several studies have examined the separation of REEs using LN resin as the stationary phase and aqueous nitric acid and hydrochloric acid solutions as eluents. Using this method, light REEs have been separated using dilute acid solutions as the eluent, whereas heavy REEs are separated using solutions with high acid concentrations. To increase the separation resolution between different REEs, either the column length or resin size is changed. In addition, the suggested methods are implemented to decrease the analysis time. This review presents technical information on the chromatographic separation of REEs using the LN resin and discusses the optimal experimental conditions.

Physical properties of granitic weathered soil on natural terrain around Seoul city (서울주변에 분포한 화강암류 풍화토층의 물리적 성질)

  • Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1122-1129
    • /
    • 2010
  • Various soil tests were performed in the laboratory after soil samples were obtained from natural terrains distributed on the granitic rocks where are located in Mt. Bukhan, Mt. Surak and Mt. Gwanak around Seoul. Through the comparison of soil properties in each mountain, the difference of soil properties in a similar geological condition was investigated. According to the result of soil test, the soils were generally classified into calyey and silty sands with a well grade. Soil densities are ranged from $2.62kg/cm^3$ to $2.67kg/cm^3$, and water contents of soils are ranged from 3.77% to 31.12%. These values are not sorted locally. The wet unit weights of soils are ranged from $1.092kg/cm^3$ to $1.814kg/cm^3$. It has a big difference between the average values because that of Mt. Bukhan is $1.604kg/cm^3$ and those of Mt. Surak and Mt. Gwanak are $1.500kg/cm^3$ and $1.331kg/cm^3$, respectively. The internal friction angles are ranged from $31^{\circ}$ to $39^{\circ}$ and the cohesions are ranged from 1.57kPa to 8.63kPa. The shear strengths are too high and similar in all regions. The coefficients of permeability are ranged from $3.07{\times}10^{-3}cm/sec$ to $4.61{\times}10^{-2}cm/sec$. So, these soils are evaluated as a middle to high permeable ground. On average, the value of Mt. Bukhan is $1.47{\times}10^{-2}cm/sec$ and the values of Mt. Surak and Mt. Kwanak are $1.29{\times}10^{-2}cm/sec$ and $1.66{\times}10^{-2}cm/sec$, respectively.

  • PDF

Mechanical Properties of Rocks in Dokdo (독도 암석의 역학적 특성에 관한 연구)

  • Park, Chan;Jung, Yong-Bok;Song, Won-Kyong;SunWoo, Choon;Kim, Bok-Chul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • Dokdo is a volcano edifice originating from an oceanic island that was formed around 3 million to 2.2 million years ago, and it consists of Dongdo(eastern island) and Seodo(western island). Even though Dokdo is a small volcanic island, Dokdo has infinite potential value and significant economic, social, scientific, and technical aspects due to its resources, ecological and territorial value. In addition, it is of national interest with regards to the dispute with Japan over the dominium of Dokdo. A need to evaluate the ground stability of Dokdo, especially in Dongdo, has been seriously raised recently due to the various cracks caused by the progressive weathering and corrosion. This study dealt with the geology and geological layers of Dokdo and identified the status of ground cracks as the previous research to evaluate the ground stability of zones of concern in Dongdo. Also, this study analyzed the relationships between physical and mechanical properties with rock types. The results showed that the values of rock properties in Dokdo are lower contrary to the general rocks in Korea, and tuff was especially affected by the weathering and corrosion.

The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden (암반균열망-개별요소법 수치실험을 통해 살펴본 스웨덴 포쉬마크지역 암반의 역학적 및 수리적 물성에 초기응력이 미치는 영향)

  • Min, K.B.;Stephansson, O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2011
  • The purpose of this study is to demonstrate the effect of in-situ rock stresses on the deformability and permeability of fractured rocks. Geological data were taken from the site investigation at Forsmark, Sweden, conducted by Swedish Nuclear Fuel and Waste Man-agement Company (SKB). A set of numerical experiments was conducted to determine the equivalent mechanical properties (essentially, elastic moduli and Poisson's ratio) and permeability, using a Discrete Fracture Network-Discrete Element Method (DFN-DEM) approach. The results show that both mechanical properties and permeability are highly dependent on stress because of the hyperbolic nature of the stiffness of fractures, different closure behavior of fractures, and change of fluid pathways caused by deformation. This study shows that proper characterization and consideration of in-situ stress are important not only for boundary conditions of a selected site but also for the understanding of the mechanical and hydraulic behavior of fractured rocks.

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.