• Title/Summary/Keyword: geological model

Search Result 554, Processing Time 0.031 seconds

Mine water inrush characteristics based on RQD index of rock mass and multiple types of water channels

  • Jinhai Zhao;Weilong Zhu;Wenbin Sun;Changbao Jiang;Hailong Ma;Hui Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.215-229
    • /
    • 2024
  • Because of the various patterns of deep-water inrush and complicated mechanisms, accurately predicting mine water inflows is always a difficult problem for coal mine geologists. In study presented in this paper, the water inrush channels were divided into four basic water diversion structures: aquifer, rock fracture zone, fracture zone and goaf. The fluid flow characteristics in each water-conducting structure were investigated by laboratory tests, and multistructure and multisystem coupling flow analysis models of different water-conducting structures were established to describe the entire water inrush process. Based on the research of the water inrush flow paths, the analysis model of different water inrush space structures was established and applied to the prediction of mine water inrush inflow. The results prove that the conduction sequence of different water-conducting structures and the changing rule of permeability caused by stress changes before and after the peak have important influences on the characteristics of mine water-gushing. Influenced by the differences in geological structure and combined with rock mass RQD and fault conductivity characteristics and other mine exploration data, the prediction of mine water inflow can be realized accurately. Taking the water transmitting path in the multistructure as the research object of water inrush, breaking through the limitation of traditional stratigraphic structure division, the prediction of water inflow and the estimation of potentially flooded area was realized, and water bursting intensity was predicted. It is of great significance in making reasonable emergency plans.

Distribution of Fe-Mn Ore in Ugii Nuur, Mongolia Using Magnetic Data (자력자료를 이용한 몽골 우기누르 철-망간 분포 특성)

  • Park, Gyesoon;Lee, Bum-Han;Kim, In-Joon;Heo, Chul-Ho
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.422-428
    • /
    • 2014
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mineral Resources Authority of Mongolia (MRAM) performed a joint survey on Ugii Nuur Fe-Mn mineralized area. Following the survey, we carried out magnetic survey and 3D magnetic susceptibility inversion. Based on the inversion results, basic feasibility study and 3D imaging of Fe-Mn mineralized area were performed using 3D geological modeling technique. Using the distribution of total magnetic field data, we were confirmed for the possibility of horizontal extension of ore bodies from surface outcrops. The 3D magnetic susceptibility model, which is highly related with Fe content, analyzed by inversion shows that the ore bodies of Deposit 1 and Deposit 2 are extended to the underground and ore bodies that are not exposed on the surface are largely distributed in the underground. If we perform the integration analysis using this magnetic susceptibility model and the ore grade data analyzed by drilling survey, it is possible to carry out the effective potential evaluation of Ugii Nuur Fe-Mn ore deposit.

Rock Mechanics Modeling of the Site for the 2nd Step Construction of the KAERI Underground Research Tunnel (KURT) (KURT 2단계 건설부지에 대한 암석역학모델 설정)

  • Jang, Hyun-Sic;Ko, Chi-Hye;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.247-260
    • /
    • 2014
  • Rock masses at the site for the $2^{nd}$ step construction of the KAERI Underground Research Tunnel (KURT) are divided into six units to establish a rock mechanics model that is dependent on the geological characteristics and degree of joint development. The site primarily consists of three granitic units (G1, G2, and G3), two dykes (D1 and D3), and a fault zone of poor rock mass quality (F3). The F3 unit crosses the tunnel at the beginning of the site of $2^{nd}$ step construction. The rock masses of each unit are classified by RMR (Rock Mass Rating), Q-system, and RMi (Rock Mass Index), all based on borehole logging data. The deformation modulus, rock mass strength, cohesion, and friction angle for each unit are calculated using established empirical relationships. The representative rock mass classification and geotechnical parameters for the rock mass units are established, and a rock mechanics model for the site is proposed, which will be useful in the design and stability analysis of the $2^{nd}$ step construction of KURT.

Experimental Study on the Argon Impurity Effect in the Pressure Drop of CO2 mixture flow (관내 이산화탄소 압력강하에 아르곤 불순물이 미치는 영향에 관한 실험적 연구)

  • Cho, Meang-Ik;Kang, Seong-Gil;Huh, Cheol;Baek, Jong-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8870-8878
    • /
    • 2015
  • During the carbon-dioxide capture and storage(CCS) process, $CO_2$ is captured from large point source, and then injected and stored in stable geological structure for thousands and more years. Inside the captured $CO_2$ flow, various impurities, such as $N_2$, $O_2$, argon, etc, are included inevitably. These impurities affect on the CCS process on various aspects. In this study, we designed and built experimental facility to evaluate the various impurity effect on the $CO_2$ pipeline flow, and analyzed the effect of argon ratio and pressure variation on the pressure drop of $CO_2$ flow. By comparing experimental data with 4 kinds of pressure drop model, we figured out and recommended the Cicchitti's model since it showed most accurate result among compared models in this study.

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+ (Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석)

  • Cho, Minji;Lu, Zhong;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.443-459
    • /
    • 2013
  • Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

A Prediction of Thermal Expansion Coefficient for Compacted Bentonite Buffer Materials (압축 벤토나이트 완충재의 열팽창계수 추정)

  • Yoon, Seok;Kim, Geon-Young;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2018
  • A geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is indispensable to assure the disposal safety of high-level radioactive waste. Since the heat generated from spent nuclear fuel in a disposal canister is released to the surrounding buffer materials, the thermal properties of the buffer material are very important in determining the entire disposal safety. Especially, since thermal expansion can cause thermal stress to the intact rock mass in the near-field, it is very important to evaluate thermal expansion characteristics of bentonite buffer materials. Therefore, this paper presents a thermal expansion coefficient prediction model of the Gyeongju bentonite buffer materials which is a Ca-bentonite produced in South Korea. The linear thermal expansion coefficient was measured considering heating rate, dry density and temperature variation using dilatometer equipment. Thermal expansion coefficient values of the Gyeongju bentonite buffer materials were $4.0{\sim}6.0{\times}10^{-6}/^{\circ}C$. Based on the experimental results, a non-linear regression model to predict the thermal expansion coefficient was suggested and fitted according to the dry density.

Modeling of Magnetotelluric Data Based on Finite Element Method: Calculation of Auxiliary Fields (유한요소법을 이용한 MT 탐사 자료의 모델링: 보조장 계산의 고찰)

  • Nam, Myung-Jin;Han, Nu-Ree;Kim, Hee-Joon;Song, Yoon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.164-175
    • /
    • 2011
  • Using natural electromagnetic (EM) fields at low frequencies, magnetotelluric (MT) surveys can investigate conductivity structures of the deep subsurface and thus are used to explore geothermal energy resources and investigate proper sites for not only geological $CO_2$ sequestration but also enhanced geothermal system (EGS). Moreover, marine MT data can be used for better interpretation of marine controlled-source EM data. In the interpretation of MT data, MT modeling schemes are important. This study improves a three dimensional (3D) MT modeling algorithm which uses edge finite elements. The algorithm computes magnetic fields by solving an integral form of Faraday's law of induction based on a finite difference (FD) strategy. However, the FD strategy limits the algorithm in computing vertical magnetic fields for a topographic model. The improved algorithm solves the differential form of Faraday's law of induction by making derivatives of electric fields, which are represented as a sum of basis functions multiplied by corresponding weightings. In numerical tests, vertical magnetic fields for topographic models using the improved algorithm overcome the limitation of the old algorithm. This study recomputes induction vectors and tippers for a 3D hill and valley model which were used for computation of the responses using the old algorithm.

Differentiation Trend of Rare Earth Elements of the Skaergaard Intrusion (Skaergaard 암체의 희토류의 분화경향)

  • Yun D. Jang
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.617-625
    • /
    • 2001
  • The Skaergaard intrusion is widely considered a type example of a strongly fractionated, layered intrusion that has undergone extensive in situ igneous differentiation. The Intrusion, therefore, should be a good locality for modeling trace element vriation in a closed system. Previous studios (Haskin and Haskin, 1968; Faster et al., 1974), however, have suggested thats the rare earth elements in whole rocks and mineeral separates from the Intrusion did not fellow the expected trend for closed system crystatllization. Trace element modeling using published distribution coefficients, modal abundances of the coexisting minerals, and the concentration of trace elements In whole rocks and mineral separates from the Skaergaard Intrusion, reveals that the rare earth elements were significantly Influenced by the crystallization of abundant apatite in the Layered Series suring the final stages of crystallization. The results of trace element modeling also suggcsts that apatite, which appears sporadically in the UBS, is not a primary liquidus phase in these samples as previously suggested (Naslund, 1984) but an interstitial phase that (lid not directly effect trace element abundances In the evolving magma As the Skaergaard magma coaled convection, or convected as small Isolated cells during the final stages of differentiation, an elebated $P_{H2O}$ Induced by accumulation of volatile elements near the roof of the magma chamber ingibited or delayed the precipitation of primary apatite in the UBS If the Skaergaard differentiation Is modeler assuming primary apatite crystallization In the upper par of the LS where abundant modal apatite is present, and only late stage crystallization of apatite In the UBS where apatite Is less abundant, rare earth elements abundances follow a closed system variation trend. These results rule but any differentiation model for the Skaergaard Intrusion that Includesvolumetrically significant injections or discharges of magma Into or out of the chamber during the final 20% of the crystallization history.

  • PDF

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

Discrete element simulations of continental collision in Asia (아시아 대륙충돌의 개별요소 시뮬레이션)

  • Tanaka Atsushi;Sanada Yoshinori;Yamada Yasuhiro;Matsuoka Toshifumi;Ashida Yuzuru
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analogue physical modelling using granular materials (i.e., sandbox experiments) has been applied with great success to a number of geological problems at various scales. Such physical experiments can also be simulated numerically with the Discrete Element Method (DEM). In this study, we apply the DEM simulation to the collision between the Indian subcontinent and the Eurasian Plate, one of the most significant current tectonic processes in the Earth. DEM simulation has been applied to various kinds of dynamic modelling, not only in structural geology but also in soil mechanics, rock mechanics, and the like. As the target of the investigation is assumed to be an assembly of many tiny particles, DEM simulation makes it possible to treat an object with large and discontinuous deformations. However, in DEM simulations, we often encounter difficulties when we examine the validity of the input parameters, since little is known about the relationship between the input parameters for each particle and the properties of the whole assembly. Therefore, in our previous studies (Yamada et al.,2002a,2002b,2002c), we were obliged to tune the input parameters by trial and error. To overcome these difficulties, we introduce a numerical biaxial test with the DEM simulation. Using the results of this numerical test, we examine the validity of the input parameters used in the collision model. The resulting collision model is quite similar to the real deformation observed in eastern Asia, and compares well with GPS data and in-situ stress data in eastern Asia.