DOI QR코드

DOI QR Code

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+

Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석

  • Cho, Minji (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Lu, Zhong (Cascades Volcano Observatory, U.S.Geological Survey (USGS)) ;
  • Lee, Chang-Wook (National Institute of Meteorological Research, Korea Meteorological Administration)
  • Received : 2013.08.13
  • Accepted : 2013.10.04
  • Published : 2013.10.31

Abstract

Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

자바 섭입대 위에 존재하는 인도네시아 메라피 화산은 1~5년의 주기를 가지는 화산활동이 활발한 성층화산이다. 대체적으로 화산폭발지수가 1-3정도의 규모로 나타나는데 비해 최근 2010년 분화는 화산폭발지수가 4까지 올라가 386명을 사망자를 유발했다. 본 연구에서는 40년간 지구를 관측해온 Landsat 영상을 이용하여 18년 동안 메라피 화산의 지표변화를 관측하였다. 연구를 위해 1994년 7월 6일부터 2012년 9월 1일까지 총 55장의 Landsat-5,7 영상을 수집하였으며, 밴드조합영상을 통해 화산쇄설류의 흐름이 시간에 따라 이동함을 확인하였다. 화산쇄설류가 덮고 있는 지역을 추출하기 위해서, COST model을 이용한 대기보정 후 감독분류를 수행하였으며, 그 결과 CVP 보고서에 기재된 화산쇄설류의 분화 방향과 추출된 화산쇄설류 영역의 변화가 거의 일치했다. NASA에서 제공하는 Landsat-5,7 위성의 열적외선 밴드를 이용한 온도 추출 기법을 적용하여 분화구 지역의 평균 지표온도를 산출한 결과, 분화 전 지표 온도가 급격히 상승하고, 분화 후 온도가 하강하는 양상을 반복적으로 나타냈다. 비록 기상조건에 따른 영상획득에 제약이 있지만, 장기간 발생된 메라피 화산의 지표변화를 확인하는데 있어서 Landsat 위성 영상이 매우 유용한 도구임을 확인했다.

Keywords

References

  1. Acharya, P.K., A. Berk, G.P. Anderson, N.F. Larsen, S.C. Tsay, and K.H. Stammes, 1999. MODTRAN4:Multiple scattering and bidirectional distribution function(BRDF) upgardes to MODTRAN, Proc. of SPIE, Optical Spectroscopy Techniques and Instrumentation of Atmospheric and Space Research, 3756.
  2. Andreastuti, S.D., B.V. Alloway, and I.E.M. Smith, 2000. A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment, Journal of Volcanology and Geothermal Research, 100: 51-67. https://doi.org/10.1016/S0377-0273(00)00133-5
  3. Bedard, F., G. Reichert, R. Dobbins and I. Trepanier, 2008. Evaluation of segment-based gap-filled Landsat $ETM^+$ SLC-off satellite data for land cover classification in southern Saskatchewan, Canada, International Journal of Remote Sensing, 29(7): 2041-2054. https://doi.org/10.1080/01431160701281064
  4. Bignami, C., J. Ruch, M. Chini, M. Neri, M.F. Buongiorno, S. Hidayati, D.S. Sayudi, and Surono, 2013. Pyroclastic density current volume estimation after the 2010 Merapi Volcano eruption using X-band SAR, Journal of Volcanology and Geothermal Research, 261:236-243, doi: 10.1016/j.jvolgeores.2013.03.023
  5. Camus G, A. Gourgaud, P-C. Mossand-Berthommier, and P-M. Vincent, 2000. Merapi (central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events, Journal of Volcanology and Geothermal Research, 100:139-163. https://doi.org/10.1016/S0377-0273(00)00135-9
  6. Charbonnier, S.J., and R. Gertisser, 2008. Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia, Journal of Volcanology and Geothermal Research, 177: 971-982. https://doi.org/10.1016/j.jvolgeores.2008.07.008
  7. Chavez, P.S., 1996. Image-based atmospheric corrections revisited and improved, American Society for Photogrammetry and Remote Sensing, 62: 1025-1036.
  8. Chander, G., and B. Markham, 2003. Revised Landsat- 5 TM radiometric calibration procedures and postcalibration dynamic ranges, IGARSS, 41(1):2674-2677.
  9. Chander, G., B. Markham, and D.L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, $ETM^+$, and EO-1 ALI sensors, Remote Sensing of Environment, 113: 893-903. https://doi.org/10.1016/j.rse.2009.01.007
  10. Chen, J., X. Zhu, J.E. Vogelmann, F. Gao, and S. Jin, 2011. A simple and effective method for filling gap in Landsat $ETM^+$ SLC-off images, Remote Sensing of Environment, 115: 1053-1064. https://doi.org/10.1016/j.rse.2010.12.010
  11. Chiodini, G., F. Frondini, C. Cardellini, D. Granieri, L. Marini, and G. Ventura, 2001. CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy, Journal of Geophysical Research- Solid Earth, 106(B8): 16213-16221. https://doi.org/10.1029/2001JB000246
  12. Dash, P., F.M. Gottsche, F.S. Olesen, and H. Fischer, 2002. Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends, International Journal of Remote Sensing, 23(13): 2563-2594. https://doi.org/10.1080/01431160110115041
  13. Dehn, J., K.G. Dean, K. Engle, and P. Izbekov, 2002. Thermal precursors in satellite images of the 1999 eruption of Shishaldin Volcano, Bulletin of Volcanology, 64(8): 525-534. https://doi.org/10.1007/s00445-002-0227-0
  14. de Lorenzo, S., P. Gasparini, F. Mongelli, and A. Zollo, 2001. Thermal state of the Campi Flegrei caldera inferred from seismic attenuation tomography, Journal of Geodynamics, 32(4-5):467-486. https://doi.org/10.1016/S0264-3707(01)00044-8
  15. Donegan, S.J., and L.P. Flynn, 2004. Comparison of the response of the Landsat 7 Enhanced Thematic Mapper Plus and the Earth Observing- 1 advanced land imager over active lava flows, Journal of Volcanology and Geothermal Research, 135: 105-126. https://doi.org/10.1016/j.jvolgeores.2003.12.010
  16. Dove, M.R., 2008. Perception of volcanic eruption as agent of change on Merapi Volcano, Central Java, Journal of Volcanology and Geothermal Research, 172: 329-337. https://doi.org/10.1016/j.jvolgeores.2007.12.037
  17. Glaze, L.S., P.W. Francis, S. Self, and D.A. Rothery, 1989. The 16 September 1986 of Lascar volcano, north Chile: Satellite investigations, Bulletin of Volcanology, 51: 149-160. https://doi.org/10.1007/BF01067952
  18. Gillespie, A., A. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook, and A.B. Kahle, 1998. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images, IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113-1126. https://doi.org/10.1109/36.700995
  19. Higgins, J., and A. Harris, 1997. VAST: A program to locate and analyze volcanic thermal anomalies automatically from remotely sensed data, Computers & Geosciences, 23(6): 627-645. https://doi.org/10.1016/S0098-3004(97)00039-3
  20. Hill, D.P., J.O. Langbein, and S. Prejean, 2003. Relations between seismicity and deformation during unrest in Long Valley Caldera, California, from 1995 through 1999, Journal of Volcanology and Geothermal Research, 127(3-4): 175-193. https://doi.org/10.1016/S0377-0273(03)00169-0
  21. Iguchi, M., K. Ishihara, Surono, and M. Hendrasto, 2011. Learn from 2010 eruptions at Merapi and Sinabung Volcanoes in Indonesia, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., 54(B).
  22. Lagios, E., S. Vassilopoulou, V. Sakkas, V. Dietrich, B.N. Damiata, and A. Ganas, 2007. Testing satellite and ground thermal imaging of lowtemperature fumarolic field: The dormant Nisyros Volcano (Greece), ISPRS Journal of Photogrammetry & Remote Sensing, 62: 447-460. https://doi.org/10.1016/j.isprsjprs.2007.07.003
  23. Landsat project Science Office, 2006. Landsat 7 Science Data User's Handbook. Available from .
  24. Lee, H., and H. Han, 2005. Analysis of lake water temperature and seaonal stratification in the Han river system from time-series of Landsat images, Korean Journal of Remote Sensing, 21(4): 253- 271 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2005.21.4.253
  25. Lee, C.W., M. Cho, and Y.J. Choi, 2013. Satellite Imagery Correction Method and System, Republic of Korea, 10-2013-0033580.
  26. Li, Z.L., and F. Becker, 1993. Feasibility of land surface temperature and emissivity determination from AVHRR data, Remote Sensing of Environment, 43: 67-85. https://doi.org/10.1016/0034-4257(93)90065-6
  27. Mia, MD.B. and Y. Fujimitsu, 2012. Mapping hydrothermal altered mineral deposits using Landsat 7 $ETM^+$ image in and around Kuju Volcano, Kyushu, Japan, Journal of Earth System Science, 121(4): 1049-1057. https://doi.org/10.1007/s12040-012-0211-9
  28. Newhall, C., S. Bronto, B.V. Alloway, S. Andreastuti, N.G. Banks, I. Bahar, M.A. Del Marmol, R.D. Hadisantono, R.T. Holcomb, J. McGeehin, J.N. Miksic, M. Rubin, S.D. Sayudi, R. Sukhyar, R.I. Tilling, R. Torley, D. Trimble, and A.D. Wirakusumah, 2000. 10,000 Years of explosive eruptions at Merapi Volcano, Central Java: Archaeological and modern implications, Journal of Volcanology and Geothermal Research. 100:9-50. https://doi.org/10.1016/S0377-0273(00)00132-3
  29. Oppenheimer, C., P.W. Francis, D.A. Rothery, R.W.T. Carlton, and L.S. Glaze, 1993. Infrared imageanalysis of volcanic thermal features_Lascar Volcano, Chile, 1984-1992, Journal of Geophysical Research-Solid Earth, 98(B3): 4269-4286. https://doi.org/10.1029/92JB02134
  30. Ottle, C., and M. Stroll, 1993. Effect of atmospheric absorption and surface emissivity of the determination of land surface temperature from infrared satellite data, International Journal of Remote Sensing, 14: 2025-2037. https://doi.org/10.1080/01431169308954018
  31. Park, S.H., M.J. Lee, and H.S. Jung, 2012. Analysis on the snow cover variations at Mt. Kilimanjaro using Landsat satellite images, Korean Journal of Remote Sensing, 28(4): 409-420 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.4.5
  32. Park, S.H., H.S. Jung, and H.S. Shin, 2013. An efficient method to estimate land surface temperature difference (LSTD) using Landsat satellite images, Korean Journal of Remote Sensing, 29(2): 197-207 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2013.29.2.4
  33. Schädlich, S., F.M. Gottsche, and F.S. Olesen, 2001. Influence of land parameters and atmosphere on Meteosat brightness temperatures and generation of land surface temperature maps by temporally and spatially interpolating atmospheric correction, Remote Sensing of Environment, 75(1): 39-46. https://doi.org/10.1016/S0034-4257(00)00154-1
  34. Storey, J., P. Scaramuzza, and G. Schmidt, 2005. Landsat 7 scan line corrector-off gap filled product development, Proc. of Pecora 16 conference, Sioux Falls, SD, USA, Oct.23-27.
  35. Surono, P. Jousset, J. Pallister, M. Boichu, M.F. Buongiorno, A. Budisantoso, F. Costa, S. Andreastuti, F. Prata, D. Schneider, L. Clarisse, H. Humaida, S. Sumarti, C. Bignami, J. Griswold, S. Carn, C. Oppenheimer, and F. Lavigne, 2012. The 2010 explosive eruption of Java's Merapi volcano_A "100-year" event, Journal of Volcanology and Geothermal Research, 241-242: 121-135. https://doi.org/10.1016/j.jvolgeores.2012.06.018
  36. Thouret. J-C., F. Lavigne, K. Kelfoun, and S. Bronto, 2000. Toward a revised hazard assessment at Merapi volcano, central Java, Journal of Volcanology and Geothermal Research, 100: 479-502. https://doi.org/10.1016/S0377-0273(00)00152-9
  37. Vidal, A., 1991. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data, International Journal of Remote Sensing, 12: 2449-2460. https://doi.org/10.1080/01431169108955279
  38. Voight B, E.K. Constantine, S. Siswowidjoyo, and R. Torley, 2000. Historical eruptions of Merapi volcano, central Java, Indonesia, 1768-1998, Journal of Volcanology and Geothermal Research, 100: 69-138. https://doi.org/10.1016/S0377-0273(00)00134-7
  39. Wan, Z., D. Ng, and J. Dozier, 1994. Spectral emissivity measurements of land-surface materials and related radiative transfer simulations, Advances in Space Research, 14(3):91-94. https://doi.org/10.1016/0273-1177(94)90197-X
  40. Wright, R., S. De la Cruz-Reyna, A. Harris, L. Flynn, and J.J. Gomez-Palacios, 2002. Infrared satellite monitoring at Popocatepetl: Explosions, exhalations, and cycles of dome growth, Journal of Geophysical Research-Solid Earth, 107(B8): 2153, doi:10.1029/2000JB000125.

Cited by

  1. Analysis of Optical Satellite Images and Pyroclastic Flow Inundation Model for Monitoring of Pyroclastic Flow Deposit Area vol.30, pp.2, 2014, https://doi.org/10.7780/kjrs.2014.30.2.2
  2. Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.1
  3. Multi-temporal Analysis of Deforestation in Pyeongyang and Hyesan, North Korea vol.32, pp.1, 2016, https://doi.org/10.7780/kjrs.2016.32.1.1
  4. Landsat 위성영상을 활용한 낙동강 삼각주 연안사주의 면적 시계열 분석 vol.34, pp.5, 2013, https://doi.org/10.7848/ksgpc.2016.34.5.457
  5. LANDSAT영상을 이용한 서울시 행정구역 단위의 열섬효과 분석 vol.33, pp.5, 2013, https://doi.org/10.7780/kjrs.2017.33.5.3.6
  6. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1
  7. 재난 모니터링을 위한 Landsat 8호 영상의 구름 탐지 및 복원 연구 vol.35, pp.5, 2013, https://doi.org/10.7780/kjrs.2019.35.5.2.10
  8. 격자자료 결측복원을 위한 DCT-PLS 기법의 활용성 평가 vol.36, pp.6, 2020, https://doi.org/10.7780/kjrs.2020.36.6.1.10
  9. A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia vol.36, pp.6, 2013, https://doi.org/10.7780/kjrs.2020.36.6.1.3