• Title/Summary/Keyword: geological distribution

Search Result 473, Processing Time 0.028 seconds

Estimation of Consolidation Characteristics of Soft Ground in Major River Mouth (주요 강하구 연약지반의 압밀 특성 평가)

  • Lee, JunDae;Kwon, YoungChul;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.69-79
    • /
    • 2019
  • The coastal area forms various sedimentary layers according to the environmental conditions such as the topography and geological features of the upper region of the river, ocean currents, and river mouth. Therefore, identifying the characteristics of the marine clay deposited in the coastal area plays a key role in the investigation of the formation of soft ground. In general, alluvial grounds are formed by a variety of factors such as changes in topography and natural environment, they have very diverse qualities depending on the deposited region or sedimentation conditions. The most important thing for the construction of social infrastructures in soft ground areas is economical and efficient treatment of soft ground. In this study, the author collected data from diverse laboratory and field tests on five areas in western and southern offshore with relatively high reliability, and then statistically analyzed them, thereby presenting standard constants for construction design. Correlation between design parameters such as over consolidation ratio, preconsolidation pressure was analyzed using linear and non-linear regression analyses. Also, proposed distribution characteristics of design parameters in consideration of each region's uncertainty through statistical analyses such as normality verification, outlier removal.

Digital Gravity Anomaly Map of KIGAM (한국지질자원연구원 디지털 중력 이상도)

  • Lim, Mutaek;Shin, Younghong;Park, Yeong-Sue;Rim, Hyoungrea;Ko, In Se;Park, Changseok
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • We present gravity anomaly maps based on KIGAM's gravity data measured from 2000 to 2018. Until 2016, we acquired gravity data on about 6,400 points for the purpose of regional mapping covering the whole country with data density of at least one point per $4km{\times}4km$ for reducing the time of the data acquisition. In addition, we have performed local gravity surveys for the purpose of mining development in and around the NMC Moland Mine at Jecheon in 2013 and in the Taebaeksan mineralized zone from 2015 to 2018 with data interval of several hundred meters to 2 km. Meanwhile, we carried out precise gravity explorations with data interval of about 250 m on and around epicenter areas of Gyeongju and Pohang earthquakes of relatively large magnitude which occurred in 2016 and in 2017, respectively. Thus we acquired in total about 9,600 points data as the result. We also used additional data acquired by Pusan National University for some local areas. Finally, gravity data more than 16,000 points except for the repetition and temporal control points were available to calculate free-air, Bouguer, and isostatic gravity anomalies. Therefore, the presented anomaly maps are most advanced in spatial distribution and the number of used data so far in Korea.

Introduction of Inverse Analysis Model Using Geostatistical Evolution Strategy and Estimation of Hydraulic Conductivity Distribution in Synthetic Aquifer (지구통계학적 진화전략 역산해석 기법의 소개 및 가상 대수층 수리전도도 분포 예측에의 적용)

  • Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.703-713
    • /
    • 2020
  • In many geological fields, including hydrogeology, it is of great importance to determine the heterogeneity of the subsurface media. This study briefly introduces the concept and theory of the method that can estimate the hydraulic properties of the media constituting the aquifer, which was recently introduced by Park (2020). After the introduction, the method was applied to the synthetic aquifer to demonstrate the practicality, from which various implications were drawn. The introduced technique uses a global optimization technique called the covariance matrix adaptation evolution strategy (CMA-ES). Conceptually, it is a methodology to characterize the aquifer heterogeneity by assimilating the groundwater level time-series data due to the imposed hydraulic stress. As a result of applying the developed technique to estimate the hydraulic conductivity of a hypothetical aquifer, it was confirmed that a total of 40000 unknown values were estimated in an affordable computational time. In addition, the results of the estimates showed a close numerical and structural similarity to the reference hydraulic conductivity field, confirming that the quality of the estimation by the proposed method is high. In this study, the developed method was applied to a limited case, but it is expected that it can be applied to a wider variety of cases through additional development of the method. The development technique has the potential to be applied not only to the field of hydrogeology, but also to various fields of geology and geophysics. Further development of the method is currently underway.

A Study on the Analysis of the Relaxation Area and the Improvement Effect of the Ground by Road Subsidence (지하연속벽 배면 도로의 지반침하에 따른 이완영역분석방법과 지반 보강 효과검증에 관한 연구)

  • Lee, Hyoung Kyu;Lee, Yong-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • Although underground works are essential to use underground spaces in urban areas efficiently, various damages caused by constructions have often occurred, making them major social problems. Since 2018, it is stipulated in the Special Act on Underground Safety Management that appropriate construction methods must be used in the design stage to prevent various damage cases. This Special Act includes establishing an area subject to underground safety impact assessment, analysis of ground and geological status, review of effects caused by changes in groundwater, review of ground safety, and establishment of measures to secure underground safety. This study area consists of various strata in order of landfill, sedimentary silt, sedimentary sand, sedimentary gravel, weathering zone, and foundation rock. Also, the slurry wall, a highly rigid underground continuous wall, was chosen as a construction method to consider high water table distribution and minimize the influence of the surroundings in this area. However, ground subsidence occurred on the road nearby in December 2019 due to the inflow of loosening soil to the construction area. Thus, several types of site investigations were conducted to suggest an appropriate analysis method and to find out loosed ground behavior and its area for the subsided site. As a result, new design soil properties were re-calculated, and the reinforcement measures were proposed through analytical verification.

Regional Categorization of Gyeonggi Province for Fine Dust Management (경기도 지역 미세먼지 관리를 위한 권역 범주화 연구)

  • Lee, Su-Min;Lee, Tae-Jung;Oh, Jongmin;Kim, Sang-Cheol;Jo, Young-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.237-246
    • /
    • 2021
  • The similarity of hourly PM10 and PM2.5 concentration profiles of the atmospheric monitoring stations in Gyeonggi-do was evaluated through the multilateral analysis between stations. The existing category for most stations in the regions shows relatively low Pearson correlation values of 0.68 and 0.7 for PM10 and PM2.5 on average respectively, and some monitoring stations revealed high relationships over 0.8 to other regions. Since the current regions are mainly categorized by cluster analysis based on the number of occurrence of high concentration events and geological factors, it is necessary to reclassify them by concentration characteristics for precise fine dust management. In accordance, multi-dimensional scaling being able to visualize could categorize the regions based on regional emission contribution rate and hourly fine dust concentration. As a result of the current analysis, PM10 and PM2.5 could be reclassified into five regions and fourregions, respectively.

Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity (탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사)

  • Kim, Namsun;Lee, Jong-Sub;Kim, Ki-Seog;Kim, Sang Yeob;Park, Junghee
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.49-60
    • /
    • 2022
  • Underground urbanization appears to be a promising solution in response to the shortage of construction sites in the above-ground space. In this context, an accurate evaluation of a construction site ensures the long-term performance of geosystems. This study characterizes potential sites for complex plants built in underground space using geophysical methods (i.e., seismic refraction exploration and electrical resistivity survey) and in situ tests (i.e., standard penetration tests (SPTs) and downhole tests). SPTs are conducted in nine boreholes BH-1-BH-9 to estimate the groundwater level and vertical distribution of geological structures. The seismic refraction method enables us to obtain the elastic wave velocity and thickness of each soil layer for each cross-sectional area. An electrical resistivity survey conducted using the dipole array method provides the electrical resistivity profiles of the cross-sectional area. Data obtained using geophysical techniques are used to assess the classification of the soil layer and bedrock, particularly the fracture zone. This study suggests that geotechnical information using in situ tests and geophysical methods are useful references to design an underground complex plant construction.

A Study on Flood Susceptibility of Heritage Sites by Heritage Type Depending on Locational Characteristics (입지특성에 따른 문화재 유형별 홍수 민감성 기초연구)

  • Kim, Ji-Soo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.46-56
    • /
    • 2022
  • This study aimed to analyze the locational characteristics of heritage sites in Seoul in order to identify flood susceptibility by type. As for the location factors related to flood susceptibility, elevation, slope, distance to streams, and topographic location were analyzed. Literature review was supplemented for the historical and humanistic environments of heritage sites. The results of the study are as follows. First, heritage sites in Seoul are distributed throughout the city, and are especially highly dense in the Hanyangdoseong fortress. It was also confirmed that heritage sites were concentrated around Jung-gu, Jongno-gu, Jingwan-dong, and Ui-dong in the quantitative spatial analyses. Second, types of heritage sites at the circumstance susceptible to flood damage were related to commerce and distribution, traffic, modern traffic and communication, geological monument, residence, government office, and palace. Third, heritage types with locational characteristics that showed low flood susceptibility were found to be natural scenic spots, telecommunication, ceramics, Buddhism, tombs, and tomb sculptural heritage assets. In a time when risk factors that can damage the value of heritage are gradually increasing due to anthropogenic influences along with changes in the natural environment, this study provides basic data for vulnerability analysis that reflects the unique characteristics of heritage assets. The results can contribute to more comprehensive and comprehensive insights for the management and protection of heritage by including the humanities and social science data together with natural factors in the analysis.

Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data (다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정)

  • Kim, Ho-Rim;Yu, Soonyoung;Yun, Seong-Taek;Kim, Kyoung-Ho;Lee, Goon-Taek;Lee, Jeong-Ho;Heo, Chul-Ho;Ryu, Dong-Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.353-366
    • /
    • 2022
  • Spatial estimation of geoscience data (geo-data) is challenging due to spatial heterogeneity, data scarcity, and high dimensionality. A novel spatial estimation method is needed to consider the characteristics of geo-data. In this study, we proposed the application of Gaussian Mixture Model (GMM) among machine learning algorithms with multivariate data for robust spatial predictions. The performance of the proposed approach was tested through soil chemical concentration data from a former smelting area. The concentrations of As and Pb determined by ex-situ ICP-AES were the primary variables to be interpolated, while the other metal concentrations by ICP-AES and all data determined by in-situ portable X-ray fluorescence (PXRF) were used as auxiliary variables in GMM and ordinary cokriging (OCK). Among the multidimensional auxiliary variables, important variables were selected using a variable selection method based on the random forest. The results of GMM with important multivariate auxiliary data decreased the root mean-squared error (RMSE) down to 0.11 for As and 0.33 for Pb and increased the correlations (r) up to 0.31 for As and 0.46 for Pb compared to those from ordinary kriging and OCK using univariate or bivariate data. The use of GMM improved the performance of spatial interpretation of anthropogenic metals in soil. The multivariate spatial approach can be applied to understand complex and heterogeneous geological and geochemical features.

Rock Mechanics Site Characterization for HLW Disposal Facilities (고준위방사성폐기물 처분시설 부지에 대한 암반역학 부지특성화)

  • Um, Jeong-Gi;Hyun, Seung Gyu
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.

Quantitative Analysis of Microplastics in Coastal Seawater of Taean Peninsula using Fluorescence Measurement Technique (형광측정기법을 이용한 태안반도 연안 표층수의 미세플라스틱 정량분포 스크리닝)

  • Un-Ki Hwang;Hoon Choi;Ju-Wook Lee;Yun-Ho Park;Wonsoo Kang;Moonjin Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.68-77
    • /
    • 2023
  • In this study, we investigated the quantitative distribution of microplastics in the surface seawater at 8 points near the Taean Peninsula using fluorescence staining. The study revealed a detection range of microplastics from 0 to 360.5 particles/l, with an average of 149.7 ± 46.0 particles/l. When classifying the microplastics by size, it was found that particles smaller than 50 ㎛ were dominant, although there were differences at Site 3. Moreover, it was not possible to identify clear correlations when comparing the number of microplastics based on collection area and particle size. Various physical and chemical factors, including plastic material, dynamic ocean conditions (such as currents, wind, waves, tides), geological characteristics (topography, slope), sediment materials including coastal organisms, human activities (fishing, development, tourism), and weather conditions (floods, rainfall), affect the behavior of microplastics. Therefore, future efforts should focus on standardizing quantitative analysis methods and conducting fundamental research on microplastic monitoring, including the analysis of environmental factors.