• 제목/요약/키워드: geoid model

Search Result 86, Processing Time 0.022 seconds

The Fundamental Study of Height Determination Using GPS Leveling Technique (GLT에 의한 정밀 표고결정의 기초적 연구)

  • 강인준;장용구;곽영주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2001
  • When determining a three dimensional position for engineering purposes, we can use the GPS survey to find position. According to the enhancement of precision for domestic Geoid model, the positional accuracy of GPS about precise method of vertical position has been also increased. But by considering Geoid undulation, it is difficult to measure GPS-derived elevations. Because Geoid undulation has changed little in local sites, GPS-derived elevations are similar to orthometric height. By ignoring Geoid undulation, it is possible to measure GLT-derived elevations at the local. small construction sites. GLT(GPS Leveling Technique) provides a method for computing orthometric heights. GLT processes the data more rapidly than conventional measurement devices. We only considered the weight factors affecting accuracy between the points. That is, the GPS procedures to produce satisfactory elevation accuracy depends on the method of observations, receivers and conditions of the local environment. A comparison was performed between the GPS survey using Geoid model and GLT at a part within Pusan National University and construction model sites in South Korea. And the writers proved the GPS surveying is efficient in positioning accuracy, time, and cost on a construction sites.

  • PDF

Construction of Precise Local Geoid using GPS/Leveling (GPS/Leveling을 이용한 정밀 지역 지오이드 구축)

  • Park, Joon-Kyu;Ahn, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4595-4600
    • /
    • 2014
  • A geoid has great meaning as a vertical reference plane, and at this point when GPS measurement is vitalized, it is an important factor that makes level measurements with GPS possible. This study carried out GPS and leveling of newly created complex control points targeting Daejeon. The geoid for the precise area was built by calculating the plane location, elevation and the geoid of each reference point using GPS/Leveling. In addition, this study evaluated the potential of GPS leveling throughout the site calibration. The geoid for the precise area intervals of approximately 1.5km throughout the study was determined. The results highlight the possibility of leveling by estimating direct leveling performance and mean altitude deviation by less than 2cm. Based on the results, if a geoid model for the precise and wide area can be developed throughout ongoing research, survey tasks that require elevation can be streamlined and the efficiency maximized.

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

A Study on Geoid Height of Provinces in South Korea by Terrain correction of Earth Gravitational Models (EGMs의 지형보정에 따른 국내 지역별 지오이드고 연구)

  • Lee, yong-chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.942-946
    • /
    • 2007
  • The new gravity field combination models are expected to improve the knowledge of the Earth's global gravity field. This study evaluates six global gravity field models derived from gravimetry and altimetry surface data in a comparison with ground truth in South Korea. For calculating a more accurate estimate of the geoid heights from the height anomalies, the terrain corrections due to the terrain masses over geoid have considered, the model for the topographic correction is a spherical harmonic expansion of the ETOPO2 DTM model. Geoid heights obtained from GPS and levelling in land area of South Korea are compared with those from the EGMs. The results show that EIGEN-CG03C EGM and EIGEN-GL04C EGM displayed the nearest results to GPS/leveling, and also confirmed the importance of terrain correction for geoid height in case of the uneven topography.

  • PDF

Accuracy Analysis of GNSS-derived Orthometric Heights on the Leveling Loop Disconnected Area

  • Jung, Sung Chae;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To compensate for the shortcomings of spirit leveling, research on the determination of GNSS (Global Navigation Satellite System)-derived orthometric height has been actively carried out. However, most analyses were primarily performed inland. In this study, the influences of the arrangement of control points, observation duration, and geoid model on the accuracy of the GNSS-derived orthometric height have been analyzed to suggest the proper method to apply the determination of GNSS-derived orthometric height to the leveling loop disconnected area. As a result, it was found that two known points located near the unknown points need to be fixed in the leveling loop disconnected area. Further, 3 cm level of accuracy can be achieved if the GNSS survey is performed over two days, for four hours per day. In terms of the geoid model, the latest national geoid model should be applied rather than the EGM08 (Earth Gravitational Model 2008) to minimize regional bias and increase accuracy. Future research is necessary to apply the determination of the GNSS-derived orthometric height technique as a method to connect with the islands because the vertical reference system used inland and that used for the islands in Korea are still different.

Determination of Local Vortical in Celestial Navigation Systems (천측 항법 시스템의 수직 방향 결정)

  • Suk, Byong-Suk;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

A study on the Geoid of the GPS/Leveling and Geopotential Model (GPS/Leveling과 지오포텐셜 모델 지오이드 고찰)

  • 고인세;조진동
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2000
  • To utilize the survey method using the geodetic satellite GPS, we tried to analysis the GPS/Leveling and the geopotential model of the 26 GPS observation points including 23 BM and 3 triangulation points with approximately 16-km interval selected from the Andong geographic map with a scale of 1:250,000. The average deviations of the geopotential model calculated from the results of analysis to the GPS/Leveling and the previously developed geopotential models(EGM96, OSU91A, and KGEOID), are 0.493 m, 0.277 m, and 0.195 m, respectively and RMS errors are $\pm$0.299 m, $\pm$0.152 m, and $\pm$ 0.133 m. The general trend of geoid undulations, however, shows an increasing pattern to the NW-SE direction. It has been also reported that the geoid undulation related with topographic-highs and geoid-highs although very poor relationship is shown in this area.

  • PDF

Geoid Height Estimation Using Rail-road Reference Points (철도기준점을 활용한 지오이드고의 추정)

  • Heo, Joon;Song, Yeong-Sun;Kim, Sung-hoon;Moon, Cheung-Kyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.499-505
    • /
    • 2009
  • This paper evaluated applicability of railroad reference points for determinating geoid heights. For this research, reference points on the Honam express raildroad which contain ellipsoid heights estimated by GPS/Leveling and orthometric heights by leveling were used. Geoid heights were calculated uisng orthometric and ellipsoid heights of 360 railroad reference points, and the RMSE's with respect to different intervals of reference points were analysed which were induced by interpolation methods. The results showed that no significant difference of RMSE's among interpolation. methods. RMSE's of 0-4km interval of reference points were determined within 2cm and 5-8km were within 3cm. Also, this research confirmed that GPS leveling with Geoid model is not auurate enough to be used for railroad surveying as yet.

Computations of Terrain Effect within a Limited Area in Geodetic Gravity Field Modelling

  • Yun, Hong-Sic;Suh, Yong-Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.2
    • /
    • pp.291-298
    • /
    • 1995
  • This paper describes the test results of terrain corrections as the short wave length effect and geoid effects in gravity field modelling using Digital Terrain Model(DTM) in Korea. For a rigorous determination of terrain correction a dense grided DTM data wave prepard spacing $500\times{500m}$ was used for the computation of terrain effects. From the results obtained by the mass prism model and the mass line model, we were found that the terrain effects are large depend on the topography in the test area. It means that we should considered the terrain effects for the precise geoid determination.

  • PDF