• Title/Summary/Keyword: geodetic VLBI

Search Result 19, Processing Time 0.029 seconds

국내 측지 VLBI의 안테나 및 수신기 개념설계에 관한 연구

  • ;T. SASO
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.9-14
    • /
    • 2003
  • A project of constructing the first national geodetic VLBI system is in progress by National Geographic Information Institution. However, since there was no former research or project about geodetic VLBI in Korea, a new R&D is necessary on the fundamental design of the system. In this research, a preliminary study about the necessity of geodetic VLBI in Korea and basic specs for an observation center of geodetic VLBI (for example, antenna, receiver, and recorder, etc.) are presented together with the possibility of producing VLBI antenna in Korea.

  • PDF

Analysis on Geodetic Very Long Baseline Interferometer Antenna Coordinates of Republic of Korea (대한민국 측지 VLBI 안테나 위치좌표 산출 연구)

  • Yi, Sang Oh;Koh, Young Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.591-598
    • /
    • 2017
  • This study is for coordinates analysis(geocentric and rectangular coordinate) of Korean geodetic VLBI which has been operated by NGII (National Geographic Information Institute) in Republic of Korea since 2014. The purpose of this study is a fundamental research to determine the Korean geodetic datum. The VLBI data recorded from September 29th 2014 to July 31th 2017, total approximately a hundred of VLBI databases, is used to calculate daily positions and position rates. The VLBI coordinates are based on ITRF(2000,2005,2008,2014) with epochs of the first Korean VLBI observation date(September 29th 2014) and Korean Geodetic Datum(January 1st 2002). And as a results of VLBI observation, Korean VLBI coordinate movement velocity of 3.1cm/yr in the direction of $112.4^{\circ}$.

측지 VLBI 구축 타당성 조사 및 기본계획수립을 위한 연구 (1)

  • 김두환;양인태;이석배;배민수;이진우;곽영희;이원국;이영균
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.17-22
    • /
    • 2004
  • This research peformed 'Study for Investigation for propriety of constructing geodetic VLBI and Establishment of the fundamental plan' as a project commissioned by National Geographic Information Institute. In this presentation, 1 will talk about the research results of propriety investigation for geodetic VLBI and SLR. I would like to present the results of the establishment of the fundamental plan for geodetic VLBT afterwards.

  • PDF

Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors (반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산)

  • Hong, Chang-Ki;Bae, Tae-Suk;Yi, Sangoh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.717-723
    • /
    • 2020
  • Determination of local tie vectors between the space geodetic techniques such as VLBI (Very Long Baseline Interferometer), SLR (Satellite Laser Ranging), DORIS (Doppler Orbit determination and Radiopositioning Integrated on Satellite), GNSS (Global Navigation Satellite System) is essential for combination of ITRF (International Terrestrial Reference Frame). Therefore, it is required to compute IVP (Invariant Point) position of each space geodetic technique with high accuracy. In this study, we have computed Sejong VLBI IVP position by using updated mathematical model for adjustment computation so that the improvement on efficiency and reliability in computation are obtained. The measurements used for this study are the coordinates of reflective targets on the VLBI antenna and their accuracies are set to 1.5 mm for each component. The results show that the position of VLBI IVP together with its standard deviation is successfully estimated when they are compared with those of the results from previous study. However, it is notable that additional terrestrial surveying should be performed so that realistic measurement errors are incorporated in the adjustment computation process.

VLBI Type Experimental Observation of GPS

  • Kwak, Young-Hee;Kondo, Tetsuro;Amagai, Jun;Gotoh, Tadahiro;Sasao, Tetsuo;Cho, Jung-Ho;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.173-180
    • /
    • 2010
  • As a preparatory study for Global Positioning System-Very Long Baseline Interferometry (GPS-VLBI) hybrid system, we examined if VLBI type observation of the GPS signal is realizable through a test experiment. The test experiment was performed between Kashima and Koganei, Japan, with 110 km baseline. The GPS L1 and L2 signals were received by commercial GPS antennas, down-converted to video-band signals by specially developed GPS down converters, and then sampled by VLBI samplers. The sampled GPS data were recorded as ordinary VLBI data by VLBI recorders. The sampling frequency was 64 MHz and the observation time was 1 minute. The recorded data were correlated by a VLBI correlator. From correlation results, we simultaneously obtained correlation fringes from all 8 satellites above a cut-off elevation which was set to 15 degree. 87.5% of L1 fringes and 12.5% of L2 fringes acquired the Signal to Noise Ratios which are sufficient to achieve the group delay precision of 0.1nsec that is typical in current geodetic VLBI. This result shows that VLBI type observation of GPS satellites will be readily realized in future GPS-VLBI hybrid system.

세계의 측지 e-VLBI 기술의 개발방향

  • 김두환;이진우;곽영희;이원국
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.55-60
    • /
    • 2004
  • We have peformed an investigation about the present geodetic VLBI observation problems and a study about the trend of technical development in the future. Especially, I will present the research results about the present status of the technical development and the feasibility for e-VLBI which is recently highlighted.

  • PDF

ANALYSIS ON IMPACTS OF KVN TO GEODETIC VLBI NETWORK (KVN (Korean VLBI Network)의 우주측지학적 기여도 분석)

  • Cho, Jung-Ho;Park, Jong-Uk;Park, Pil-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.337-344
    • /
    • 2006
  • KVN simulation, which is focused on evaluating the impacts of KVN to geodetic VLBI network, was performed. The KVN is under construction with three radio telescopes VLBI system for radio astronomy and space geodesy. To distinguish the impacts of KVN on global and local scale networks, we designed two different sizes of VLBI networks, namely, KVN-Asia and KVN-Pacific. While the former consisted of Far East Asia region VLBI stations, the latter consisted of pacific region VLBT stations. The primary purpose of our simulation is quantitative evaluation of KVN impacts before and after the participation of KVN in the previous two virtual networks. We selected two different sets of parameters to be estimated in the simulation as indices of evaluating estimation precision: station coordinates and EOPs. The station coordinates are evaluating index for KVN-Asia and the EOPs are another evaluating index for KVN-Pacific. From the simulation results of comparisons between evaluating indexes, 50% and 20% of maximum improvements for KVN-Asia and KVN-Pacific were anticipated respectively. We expect that the space geodetic use of KVN will be focused on the several promising research fields which are proposed through the simulation results.

VLBI TRF Combination Using GNSS Software

  • Kwak, Younghee;Cho, Jungho
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.315-320
    • /
    • 2013
  • Space geodetic techniques can be used to obtain precise shape and rotation information of the Earth. To achieve this, the representative combination solution of each space geodetic technique has to be produced, and then those solutions need to be combined. In this study, the representative combination solution of very long baseline interferometry (VLBI), which is one of the space geodetic techniques, was produced, and the variations in the position coordinate of each station during 7 years were analyzed. Products from five analysis centers of the International VLBI Service for Geodesy and Astrometry (IVS) were used as the input data, and Bernese 5.0, which is the global navigation satellite system (GNSS) data processing software, was used. The analysis of the coordinate time series for the 43 VLBI stations indicated that the latitude component error was about 15.6 mm, the longitude component error was about 37.7 mm, and the height component error was about 30.9 mm, with respect to the reference frame, International Terrestrial Reference Frame 2008 (ITRF2008). The velocity vector of the 42 stations excluding the YEBES station showed a magnitude difference of 7.3 mm/yr (30.2%) and a direction difference of $13.8^{\circ}$ (3.8%), with respect to ITRF2008. Among these, the 10 stations in Europe showed a magnitude difference of 7.8 mm/yr (30.3%) and a direction difference of $3.7^{\circ}$ (1.0%), while the 14 stations in North America showed a magnitude difference of 2.7 mm/yr (15.8%) and a direction difference of $10.3^{\circ}$ (2.9%).

On the Design of Geodetic SVLBI Satellite Orbit and Its Tracking Network

  • Erhu, Wei;Jingnan, Liu;N, Kulkarni M.;Sandor, Frey
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.505-510
    • /
    • 2006
  • SVLBI (Space Very Long Baseline Interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of SVLBI satellite. This paper studies several technologies which possibly will be able to determine the orbit of space VLBI satellite. And then, according to the sorts and characteristicsof satellite and the requirements for geodetic study and the geometry of GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of the space of different heights by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.

  • PDF

Round-trip system dedicated to the Korea VLBI system for geodesy (KVG) (한국 측지 VLBI 시스템을 위한 라운드 Trip 시스템)

  • O, Hong-Jong;Kondo, Tetsuro;Kim, Du-Hwan;Lee, Jin-U;Kim, Myeong-Ho;Kim, Su-Cheol;Park, Jin-Sik;Ju, Hyeon-Hui
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.201-206
    • /
    • 2010
  • A project for construction of Korea Geodetic VLBI has officially started in Oct. 2008. The construction of all system will be completed by the end of 2011. The project was named Korea VLBI system for Geodesy (KVG), and its main purpose is to maintain the Korea Geodetic Datum. In case of the KVG system, an observation room where an H-maser frequency standard is located is in a building separated from an antenna by several tens of meters. Therefore KVG system will adopt a so-called round-trip system to transmit reference signals to the antenna with diminishing the effect of path length variations. KVG's round-trip system is designed not only available to use either metal or optical fiber cables, but also available to measure path length variations directly by using K5/VSSP32 sampler. We will present principle of round-trip system and the new type of round trip system for KVG.

  • PDF