• Title/Summary/Keyword: geochemical composition

Search Result 191, Processing Time 0.024 seconds

Raman Spectroscopic Study for Investigating the Spatial Distribution and Structural Characteristics of Mn-bearing Minerals in Non-spherical Ferromanganese Nodule from the Shallow Arctic Ocean (북극해 천해저 비구형 망가니즈단괴 내 광물종 분포 및 구조적 특성 규명을 위한 라만 분광분석 연구)

  • Sangmi, Lee;Hyo-Jin, Koo;Hyen-Goo, Cho; Hyo-Im, Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.409-421
    • /
    • 2022
  • Achieving a highly resolved spatial distribution of Mn-bearing minerals and elements in the natural ferromanganese nodules can provide detailed knowledge of the temporal variations of geochemical conditions affecting the formation processes of nodules. While a recent study utilizing Raman spectroscopy has reported the changes in the manganate mineral phases with growth for spherical nodules from the Arctic Sea, the distributions of minerals and elements in the nodules from the shallow Arctic Sea with non-spherical forms have not yet fully elucidated. Here, we reported the micro-laser Raman spectra with varying data acquisition points along three different profiles from the center to the outermost rim of the non-spherical ferromanganese nodules collected from the East Siberian Sea (~73 m). The elemental distributions in the nodule (such as Mn, Fe, etc.) were also investigated by energy dispersive X-ray spectroscopy (EDS) analysis to observe the internal structure and mineralogical details. Based on the microscopic observation, the internal structures of a non-spherical nodule can be divided into three different regions, which are sediment-rich core, iron-rich substrate, and Mn-Fe layers. The Raman results show that the Mn-bearing mineral phases vary with the data acquisition points in the Mn-Fe layer, suggesting the changes in the geochemical conditions during nodule formation. In addition, we also observe that the mineral composition and structural characteristics depend on the profile direction from the core to the rim. Particularly, the Raman spectra obtained along one profile show the lack of Fe-(oxy)hydroxides and the noticeably high crystallinity of Mn-bearing minerals such as birnessite and todorokite. On the other hand, the spectra obtained along the other two profiles present the presence of significant amount of amorphous or poorly-ordered Fe-bearing minerals and the low crystallinity of Mn-bearing minerals. These results suggest that the diagenetic conditions varied with the different growth directions. We also observed the presence of halite in several layers in the nodule, which can be evidence of the alteration of seawater after nodule formation. The current results can provide the opportunity to obtain detailed knowledge of the formation process and geochemical environments recorded in the natural non-spherical ferromanganese nodule.

Hydrochemical and Isotopic Characteristics, and Origin of Noble Gas for Low-temperature Hot Spring Waters in the Honam Area (호남지역 저온형 온천수의 수리지화학적 및 안정동위원소 특성과 영족기체의 기원에 관한 연구)

  • Jeong, Chan-Ho;Hur, Hyun-Sung;Nagao, Keisuke;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.635-649
    • /
    • 2007
  • Geochemical composition, stable isotopes $({\delta}^{18}O,\;{\delta}D,\;{\delta}^{34}S)$ and noble gases(He, Ne and Ar) of nine hot spring water and three groundwater for five hot springs(Jukam, Hwasun, Dokog, Jirisan, Beunsan) from the Honam area were analyzed to investigate the hydrogeochemical characteristics and the hydrogeochemical evolution of the hot spring waters, and to interpret the source of sulfur, helium and argon dissolved in the hot spring waters. The hot spring waters show low water temperature ranging from 23.0 to $30.5^{\circ}C$ and alkaline characteristics of pH 7.67 to 9.98. Electrical conductivity of hot spring waters is $153{\sim}746{\mu}S/cm$. Groundwaters in this area were characterized by the acidic to neutral pH range$(5.85{\sim}7.21)$, the wide electrical conductivity range $(44{\sim}165{\mu}S/cm)$. The geochemical compositions of hot spring and groundwaters can be divided into three water types: (1) $Na-HCO_3$ water type, (2) Na-Cl water type and (3) $Ca-HCO_3$ water type. The hot spring water of $Ca-HCO_3$ water type in early stage have been evolved through $Ca(Na)-HCO_3$ water type into $Na-HCO_3$ type in final stage. In particular, Jurim alkaline(pH 9.98) hot spring water plotted at the end point of $Na-HCO_3$ type in the Piper diagram is likely to arrive into the final stage in geochemical evolution process. Hydrogen and oxygen isotopic data of the hot spring water samples indicate that the hot spring waters originated from the local meteoric water showing latitude and altitude effects. The ${\delta}^{34}S$ value for sulfate of the hot spring waters varies widely from 0.5 to $25.9%o$. The sulfur source of most hot spring waters in this area is igneous origin. However, The ${\delta}^{34}S$ also indicates the sulfur of JR1 hot water is originated from marine sulfur which might be derived ken ancient seawater sulfates. The $^3He/^4He\;and\;^4He/^{20}Ne$ ratios of the hot spring waters range from $0.0143{\times}10^{-6}\;to\;0.407{\times}10^{-6}\;and\;6.49{\sim}584{\times}10^{-6}$, respectively. The hot spring waters are plotted on the mixing line between air and crustal components. It means that the He gas in the hot spring waters was mainly originated from crustal sources. However, the JR1 hot spring water show a little mixing ratio of the helium gas of mantle source. The $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range from $292.3{\times}10^{-6}\;to\;304.1{\times}10^{-6}$, implying the atmospheric argon source.

Review: Magnetite Synthesis using NanoFermentation (Review: NanoFermentation을 이용한 자철석 합성연구)

  • Moon, Ji-Won;Roh, Yul;Phelps, Tommy J.
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.195-204
    • /
    • 2012
  • Biomineralization has been explored for geochemical cycles and microbial tolerance mechanisms to metal toxicity. Here, we are introducing NanoFermentation which enables economic, environmentally friendly, requiring low input energy, and scalable manufacturing of nano-dimensioned magnetite. We are also focusing on controlling factors of crystallite size which can determine superparamagnetism and ferrimagnetism. Controlling factors are such as microbial species, temperature, incubation time, medium composition, substituted elements and their concentration, precursor type, reaction volume, precursor concentration density and their combinations. Crystallite size distribution of biomagnetite depends on the balance between nuclei generation and crystal growth. Biomineralization will elucidate elemental cycles on earth crust and microbial ecology as well as it will be applied to material sciences and devices via massive production of nanomaterials.

Geochemical Study on Foliated Granites in the Damyang-Jinan area (담양(潭陽)-진안(鎭安)사이에 분포(分布)하는 엽리상화강암류(葉理狀花崗岩類)에 대(對)한 암석화학적(岩石化學的) 연구(硏究))

  • Kim, Cheong-Bin;Kim, Yong-Jun;Hong, Sei-Sun
    • Economic and Environmental Geology
    • /
    • v.23 no.1
    • /
    • pp.87-104
    • /
    • 1990
  • Foliated granites between Damyang and Jinan are subdivided into Daegang foliated granite, Foliated hornblende biotite granodiorite, Sunchang foliated granodiorite, Foliated two mica granite and Samori foliated granite by mineral and texture. From EPMA data of the foliated granites following results are achieved. Composition of plagioclase are correspond to andesine, oligoclase and albite in Foliated hornblende biotite granodiorite, Sunchang foliated granodiorite and other foliated granites, respectively. And amphiboles are calcic hornblende in Foliated hornblende biotite granodiorite, and riebeckite in Daegang foliated granite. In differentiation index(D. I.) and Larsen index(L. I.), Daegang foliated granite, Foliated two mica granite and Samori foliated granite which belong to granite are 83.12-95.54 and 25.86-29.05 and Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite of diorite to granodiorite are 54.99-78.54(D. I.) and 6.48-21.01(L. I.). Harker and AMF diagrams plotted from foliated granites show that the granites are product of calc alkali rock series orignated from co-magma. Characteristic foliation of foliated granites fromed by ductile deformation at deep zone of dextral strike slip fault. Foliated granites are considered as a series of differentiated product of Triassic Igneous activity of Songrim disturbance. According to REE, (La/Lu) and Eu/Sm, Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite are correspond to granodiorite, and other foliated granites are monzo-and syeno-granite. Foliated granites having 0.20-0.01 of Em/Sm ratio are plutons emplaced by the tectonic setting in continents and continental margin.

  • PDF

Petrogeochemistry of Granitic Rocks Distributed in the Geumsan District, Korea (금산지역에 분포하는 화강암류의 암석지구화학)

  • Chin, Ho-Ill;Min, Kyoung-Won;Chon, Hyo-Taek;Park, Young-Seog
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.123-137
    • /
    • 1995
  • The Mesozoic Geumsan granitic rocks of various composition are distributed in the Geumsan district, the central part of the Ogcheon Fold Belt. About 40 ore deposits of $CaF_2{\pm}Au{\pm}Ag{\pm}Cu{\pm}Pb{\pm}Zn$ are widely distributed in this district and are believed to be genetically related to the granitic rocks. Based on their petrography and geochemistry, the granitic rocks in this district can be classified into two groups ; the Group I( equigranular leucocratic granite, porphyritic biotite granite, porphyritic pink-feldspar granite, seriate leucocratic granite) and the Group II(seriate pinkfeldspar granite, equigranular alkali-feldspar granite, equigranular pink-feldspar granite, miarolitic pink-feldspar granite, equigranular biotite granite). Interpreted from their isotopic dating data and geochemical characteristics, the Group I and the Group II are inferred to be emplaced during the Jurassic(~184Ma), and the Cretaceous to the early Tertiary period(~59Ma), respectively. Both Group I and Group II generally belong to magnetite-series granitoids. The Cretaceous granitic rocks of Group II are more highly evolved than those of the Jurassic Group I. The Rb-Sr variation diagram suggests that the granitic rocks of the Jurassic Group I and of the Cretaceous Group II be evolved mainly during the processes of fractional crystallization and partial melting, respectively.

  • PDF

The metallic composition of airborne particles in seven locations of Seoul city, Korea (대기 분진 중 중금속 성분의 공간적 농도분포 특성 비교: 서울시 7개 관측점을 중심으로)

  • Choi, Bae-Jin;Kim, Ki-Hyun
    • Analytical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.143-151
    • /
    • 2003
  • In the present study, we made measurements of PM-bound metal concentrations from seven different urbanized locations in Seoul for the period covering March 2001 through May 2002. The measurement data were analyzed to explore the possible influences of spatial factors on metal distribution characteristics. To check for the importance of such aspects on metal distribution characteristics, the measured data were compared between different metals and between different sites by several criteria including (1) coefficient of variation (CV) values; (2) temporal variability; and (3) the abundance of strongly correlated pairs. The overall results of our study indicate strong diversity in the distribution characteristics of different metals. It is found that some metals (like Fe, Mn, and Pb) tend to exhibit strong compatibility among different study sites. However, no such compatibility appears to exist for certain metals like Cu. To account for the importance of spatial factors, complex relationships between source/sink processes and geochemical characteristics of a given metallic component may have to be examined in a systematic manner.

Provenance Estimation on the Yeoncheon Samgeori Obsidian Artifacts (연천 삼거리 유적지 흑요석제 석기에 대한 산지 추정)

  • Yi, Seonbok;Jwa, Yong-Joo;Jin, Mi-Eun;Kil, Youngwoo
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-306
    • /
    • 2019
  • We estimated the provenance of the obsidian artifacts from Samgeori site at Yeoncheon, one of the prehistoric sites in South Korea. Pyroxene microlites are of hedenbergite to augite compositions, and intergrown and/or overgrown with Fe-oxides showing poikilitic texture. Major oxides contents for the matrix of the obsidian artifacts exhibit a narrow compositional range, especially SiO2 contents being 73.0~75.5 wt.% of acidic rhyolitic composition. Also, rare earth element (REE) contents are relatively constant in the obsidian artifacts, and the chondrite-normalized REE patterns show a strong Eu negative anomaly. These mineralogical and geochemical features of the Samgeori obsidian artifacts were compared with those from both the Baekdusan obsidians and Japanese Kyushu obsidians which have been thought to be two major obsidian provenances around South Korea. It is suggested that the Samgeori obsidian artifacts were possibly originated from the Baekdusan obsidians.

Temporal and Spatial Variation of Nutrient Concentrations in Shallow Pore Water in Intertidal Sandflats of Jeju Island (제주도 사질 조간대 공극수중 영양염류의 시·공간적 변화)

  • Hwang, Dong-Woon;Kim, Hyung-Chul;Park, Jihye;Lee, Won-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.704-715
    • /
    • 2012
  • To examine temporal and spatial variation in salinity and nutrients in the shallow pore water of intertidal sandflats, we measured salinity and nutrient concentrations (dissolved inorganic nitrogen [DIN], phosphorus [DIP], and silicate [DSi]) in pore water of the intertidal zone along the coastline of Jeju Island at two and/or three month intervals from May 2009 to December 2010. Geochemical parameters (grain size, ignition loss [IL], chemical oxygen demand [COD], and acid volatile sulfur [AVS]) in sediment were also investigated. The surface sediments in intertidal sandflats of Jeju Island were mainly composed of sand, slightly gravelly sand and gravelly sand, with a range of mean grain size from 0.5 to 2.5 ${\O}$. Concentrations of IL and COD in sediment were higher along the eastern coast, as compared to the western coast, due to differences in biogenic sediment composition. Salinity and nutrient concentrations in pore water were markedly different across time and space during rainy seasons, whereas concentrations were temporally and spatially more stable during dry seasons. These results suggest that salinity and nutrient concentrations in pore water depend on the advective flow of fresh groundwater. We also observed an imbalance of the DIN/DIP ratio in pore water due to the influence of contaminated sources of DIN. In particular, nutrient concentrations during rainy and dry seasons were characterized by high DIN/DIP ratios (mean-127) and low DIN/DIP ratios (mean-10), respectively, relative to the Redfield ratio (16) in offshore seawater. Such an imbalance of DIN/DIP ratios in pore water can affect the coastal ecosystem and appears to cause outbreaks of benthic seaweed along the coastline of Jeju Island.

Geochemistry and Petrogenesis of the Badwater Greenstones from Crystal Falls Terrane in Northeastern Wisconsin, U.S.A. (위스콘신주 북동부 지역에 분포하는 Badwater녹암에 대한 지화학적 연구)

  • Wee, Soo-Meen
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.281-291
    • /
    • 1996
  • Samples of Badwater greenstones from the Crystal Falls terrane in northeastern Wisconsin have been analyzed for major, trace and rare earth elements. Geochemical characteristics of the rocks provide clues to the petrologic character and paleotectonic environment of basaltic magma generation. They have chemical composition typical of continental tholeiites. The low Mg values and abundances of Ni and Cr indicate that the lavas were extensively fractionated prior to extrusion. The variations of incompatible elements suggest that the rocks were affected by interaction with crustal rocks. The samples least affected by contamination have trace element compositions similar to those of T-type mid-ocean ridge basalts. The parent was modified by crustal contamination process and this process shifted the rock compositions to that of continental tholeiites as the rock evolved. Interpretations of the chemical characteristics of the rocks, based on modem analogs, favor their emplacement in an extensional tectonic regime.

  • PDF

Interpretation of Provenance and Transportation Process for Bakseok of Geunjeongjeon Hall in Gyeongbokgung Palace, Korea (경복궁 근정전 박석의 산지와 운송과정 해석)

  • Choie, Myoungju;Lee, Chan Hee;Jo, Young Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.181-191
    • /
    • 2015
  • The Bakseok of Geunjeongjeon Hall in Gyeongbokgung Palace is platy floor stone acting as drainage, protected glaring and sliding. The Bakseoks were composed of anisotropic medium-grained biotite granite with a weak myrmekitic texture. Interpretation of transportation process for the Bakseok and original granite provenance trace of and analyze of identity based on ancient writings and detail field survey. As a result, the very similar granite with the Bakseok in lithology, composition mineral, texture and geochemical characteristics was found around Mt. Nakgasan in the Seokmodo Island. There were interpreted stonework process of the Bakseok used exfoliation granite dome with physical weathering properties in Seokmodo Island, to get platy stone economically stonework at the state level as a minimized on burden of supply and men power.