• Title/Summary/Keyword: geo-material

Search Result 337, Processing Time 0.024 seconds

Physicochemical Effect on Ultra Thermophilic Aerobic Composting Process (초고온 호기성 퇴비화의 물리·화학적 인자 평가)

  • Park, Seyong;Yoo, Euisang;Chung, Daihyuck;Lee, Jin;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.27-36
    • /
    • 2010
  • This study was conducted to evaluate physicochemical parameters; temperature, pH, C/N ratio, water content, organic contents and volume in a pilot-scale(capacity : $100m^3$) ultra thermophilic aerobic composting. There were three types input: municipal wasted sludge, livestock manure and slurry, and food waste produced in Jung-Eb city. Each target material was carried out by the first fermentation(organic waste + seed culture) and the second one(organic waste + seed culture + recycle compost), respectively. During composting, only with supply of air and mixing, the temperature increased $90{\sim}105^{\circ}C$ after every mixing in both periods. The changes of pH, $O_2$, $CO_2$ and $NH_3$ represented typical organic decomposition pattern by microorganisms. Also, all other physicochemical parameters of ultra thermophilic aerobic composting process showed similar or better performance than these of general aerobic composting. Heavy metal concentration of fermented compost adapted to compost fertilizer regulation standard in the heavy metal and hazardous analysis.

Numerical Analysis for Integrity Evaluation of River Bank (하천제방의 건전도 평가를 위한 수치해석적 연구)

  • Jung, Hyuksang;Byun, Yoseph;Chun, Byungsik;Choi, Bonghyuck;Kim, Jinman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.19-26
    • /
    • 2010
  • An influence factors for soundness evaluation of river levee include consisting embankment in case piping, permeability coefficient of ground, height of embankment, the width of crest, material characteristics of embankment and foundation ground, shape of embankment slope, an influence for penetration of rainfall or river water in case slope stability. In this study, it was operated a feasibility investigation of existing design result, stability evaluation for permeability coefficient use and permeability coefficient change of foundation ground to investigate an influence in line with permeability coefficient change for result of river levee penetration analysis. The evaluation results of influence factors, the permeability coefficient was used in design and it was evaluated influence in safety factor of piping. After the evaluation of influence factors, the permeability coefficient used in the design appears with the fact that differs in a design report about same soil.

Engineering Properties of Tire Treads for Soil Reinforcement (지반보강재로서 타이어 트레드의 공학적 특성)

  • Yoon, Yeowon;Cho, Sungsoo;Kim, Keunsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • In order to utilize treads of waste tire as reinforcement material it is necessary to know the interface friction angle between tread surfaces and soil and tensile strength of connection joint of tire treads. In this research large direct shear tests were performed to get the interface friction angle between the inner and outer surfaces of treads and soil for different degree of compaction. From the large direct shear tests, the ratio of interface friction angle to the shear friction angle of sand, ${\delta}/{\phi}$, were 1.06 in outside surface of tire tread and 0.93 in inside surface of tire tread. For weathered granite soil the ratio of interface friction angle was 0.98 and 0.92 for outside and inside of tread, respectively. Also tensile tests were performed using universal testing machine for the connection joint of treads and Tirecell units using bolts. The tensile strength of connection joint increased with the number of bolts and with the sizes of washers. Connection by polypropylene ropes showed lower strength than those of bolts.

  • PDF

Prediction of Tunnel Response by Spatially Variable Ground Motion (공간적으로 변이하는 지진파에 대한 터널의 응답 예측)

  • Kim, Intai;Han, Jungwoo;Yun, Seung;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.53-61
    • /
    • 2008
  • Various components including wave scattering, wave passage, and site amplification effects cause the ground motion to vary spatially. The spatially varying ground motion can significantly influence the dynamic response of longitudinal structures such as bridges and tunnels. While its effect on bridges has been extensively studied, there is a lack of study on its effect on underground tunnels. This paper develops a new procedure for simulating the tunnel response under spatially varying ground motion. The procedure utilizes the longitudinal displacement profile, which is developed from spatially variable ground motion time histories. The longitudinal displacement profile is used to perform a series of pseudo-static three dimensional finite element analyses. Results of the analyses show that the spatially variable ground motion cause longitudinal bending of the tunnel and can induce substantial axial stress on the tunnel lining. The effect can be significant at boundaries at which the material properties of the ground change in the longitudinal direction.

  • PDF

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF

Reclamation and Soil Improvement on Ultra Soft Soil (I) - Reclamation (초연약지반의 매립 및 지반개량 사례 연구 (I) - 매립)

  • Na, Yung-Mook;Hong, Eui;Han, Jung-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • The "Silt Pond" is 180 hectares in size and contained ultra soft slurry-like soil varying between 3 to 20 meters in thickness. Reclamation works in the Silt Pond commenced in the mid of 1990s. A considerable amount of subsurface investigation inclusive of sampling, field vane and density logging tests were carried out prior to the reclamation of the Silt Pond. Since material in the Silt Pond is extremely soft, filling was done by spreading sand with high water content in thin and equal thickness lifts, allowing the stability of the slurry-like foundation. Despite the extreme care taken, failures occurred during the sand spreading phase. A large piece of high strength geotextile measuring $900m{\times}700m$ was placed to strengthen the slurry like soil foundation at locations where the ultra-soft soil was found to be exposed. Following the remedial works, the Silt Pond was again reclaimed by sand spreading up to +4.0m CD. The success of the reclamation was confirmed by marine CPT profiling.

  • PDF

A Study on the Side Shear Developed during Pullout of Suction Pile in Clays using 3D Numerical Analysis (3차원 수치해석을 이용한 점토지반에 설치된 석션파일 인발 시 발현되는 전단응력에 관한 연구)

  • Lee, Myungjae;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.59-66
    • /
    • 2014
  • This paper presents the pullout behavior of suction pile using finite difference method; and the commercial software, FLAC3D, was employed for the numerical analyses. The ultimate pullout capacity of suction pile was predicted using conventional equations, and the results were compared with the results from numerical analyses with varying pile diameter, pile length, and the undrained shear strength of clays. Based on the results from 24 analyses, it was found that the failure pattern depends not only on the drainage condition of suction pile, but also on the pile dimensions and the material properties of surrounding soils. The developed side shear (DSS) along the internal surface of the suction pile was collected from numerical analyses, which was used to classify the failure type between sliding failure and tensile failure. Regardless of the external DSS, the high internal DSS tends to result in sliding failure in the numerical analyses, which conforms well to the estimation from conventional equations.

Evaluation of Reinforcement Effects According to Reinforcement Type and Grouting Method (지반보강재의 형상과 그라우팅 방법에 따른 보강효과 평가)

  • Park, Jongseo;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.8
    • /
    • pp.13-20
    • /
    • 2019
  • In order to ground reinforcement, the chemical grouting, the anchor, the soil nailing system, the micropile, etc. can be mentioned by the methods widely used in domestic. The above ground reinforcement methods are developed by various methods depending on the type of reinforcement, installation method, presence of prestress, grouting method, etc. However, in common, the strength of reinforcement, the friction force of grout and reinforcement and the friction force of grout and ground are the main design variables. Therefore, the optimized ground reinforcement is a material with a high tensile strength of the reinforcement itself, the friction force between the reinforcement and the grout is high, and the application of an optimal grouting method is necessary to improve the friction force between the grout and the ground. In this study, a total of 20 model tests were conducted to analyze the reinforcement effects according to the shape of the reinforcement and the grouting method. As a result of the test, As a result of the experiment, it is judged that the reinforcing effect is superior to the perforated + wing type reinforcement and post grouting method.

Unconfined Compressive Strength Characteristics of E.S.B. Mixed Soil Based on Soil Compactness and Curing Period (토양의 다짐도와 재령기간에 따른 E.S.B. 혼합토의 일축압축강도특성)

  • Oh, Sewook;Kim, Hongseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • This study aims to provide basic data for soil packaging differing in accordance with the strength characteristics of mixed soil, using E.S.B. (Eco Soil Binder), an eco-friendly hardening agent, based on the type of soil. The soil used in this study is weathered granite soil readily collected in and around Korea, and is classified into SW, SP and SC according to soil classification systems. The test piece for the unconfined compressive strength test has dimensions of 50 mm in diameter and 100 mm in height, with the mix ratio of E.S.B. proportional to the weight of mixed soil changed from 5% to 10%, 15%, 20%, 25%, and 30%, where compactness of 90% and 100% were applied according to each condition to analyze the unconfined compressive strength characteristics at material ages of 3, 7, and 28 days. Also, the ratio of soil packaging standard strength and unconfined compressive strength was calculated to determine the optimal E.S.B. mix ratio, whereby the field applicability of the unconfined compressive strength using the estimation equation of ACI209R was evaluated.

Referring to The Stupa of Master ChengGuang, Reconsideration of the History of Buddhist Monks' Octagonal Tempietto Shaped Stupa (승광선사탑(乘廣禪師塔)를 통한 팔각정형(八角亭形) 승탑사(僧塔史)의 재고(再考))

  • Hawong, Moon Ho
    • Journal of architectural history
    • /
    • v.28 no.1
    • /
    • pp.25-34
    • /
    • 2019
  • "Stupa of Buddhist Monk, YeomGeo"(844) is known as the earliest Seon-stupa relic remains in Korean peninsula, from which, during late Silla and ealy Goryeo period, there were more than 30 of stupa was built on such canon. and became the well-known material culture in Seon Buddhism in late Silla period. In $9^{th}$ century, with the JeonDeong(delivering the light of Seon)from Tang to Silla, the culture of "GeonTapIpBi(building the pagoda and erecting stele)" was also moved in. And it was right after the style of monk's stupa had been methodically changed in china, from having the room in stupa for the corpse, named as "QuanShenSheLi", to the lessened stupa that contain the cremated. Analyzing the "Master ChengGuang's stupa"(807)and its stele, it can be found the correspondences of octagonal plan and the subjects of ornamentation to that of Stupas built in Silla, reveals they were made by the same canon. By the document in the stele, surmising the historical cause of alteration in Chan stupa, there was the most famous zen master ShenHui at the time, who has the most important role of making the NanZongChan to get the authenticity in Chan Buddhism. His reliqury was the first ${\acute{s}}ar{\bar{i}}ra$ casket discovered among Chan monks' relics, consequentially it was to influence to Chan cuture and size the monks 'stupa for his ${\acute{s}}ar{\bar{i}}ra$. The stupa of master ChengGuang, by its shape and geological location, is the lost piece in the Puzzle of Chan stupa culture between Silla and Tang.