• Title/Summary/Keyword: geo-climate

Search Result 104, Processing Time 0.023 seconds

Application of GeoWEPP to determine the annual average sediment yield of erosion control dams in Korea

  • Rhee, Hakjun;Seo, Junpyo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.803-814
    • /
    • 2020
  • Managing erosion control dams requires the annual average sediment yield to determine their storage capacity and time to full sediment-fill and dredging. The GeoWEPP (Geo-spatial interface for Water Erosion Prediction Project) model can predict the annual average sediment yield from various land uses and vegetation covers at a watershed scale. This study assessed the GeoWEPP to determine the annual average sediment yield for managing erosion control dams by applying it to five erosion control dams and comparing the results with field observations using ground-based LiDAR (light detection and ranging). The modeling results showed some differences with the observed sediment yields. Therefore, GeoWEPP is not recommended to determine the annual average sediment yield for erosion control dams. Moreover, when using the GeoWEPP, the following is recommended :1) use the US WEPP climate files with similar latitude, elevation and precipitation modified with monthly average climate data in Korea and 2) use soil files based on forest soil maps in Korea. These methods resulted in GeoWEPP predictions and field observations of 0 and 63.3 Mg·yr-1 for the Gangneung, 142.3 and 331.2 Mg·yr-1 for the Bonghwa landslide, 102.0 and 107.8 Mg·yr-1 for the Bonghwa control, 294.7 and 115.0 Mg·yr-1 for the Chilgok forest fire, and 0 and 15.0 Mg·yr-1 for the Chilgok control watersheds. Application of the GeoWEPP in Korea requires 1) building a climate database fit for the WEPP using the meteorological data from Korea and 2) performing further studies on soil and streamside erosion to determine accurate parameter values for Korea.

A STUDY ON EXTRACTING THE SURFACE TEMPERATURE USING THERMAL INFRARED OF ASTER IMAGES IN URBAN AREA

  • Jo Myung-Hee;Kim Hyung-Sub;Kim Sung-Jae;Yu Seong-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.717-720
    • /
    • 2005
  • Recently as large sized urban development and the city ward drifting of population are caused, the urban surface temperature is raised very seriously and rapidly. These artificial developments have destroyed the inner and outer landscapes such as topography and have changed complex local climate such as a sudden rise in temperature, the change of wind field and air pollution. In order to clarify this problem visually, the studies on extracting the thermal infrared and the characteristic analysis of local climate in urban area had been performed by using the sixth band of Landsat TM and ETM+. However, there is a need to alternate Landsat TM and ETM+ because these satellite images are not applied any more. Therefore, in this paper it is proposed to use 2 Aster image (2004.4.17 daily 2b03, 2004.10.10 night 2b03) of EOS AM and to extract the surface temperature. Also, the pattern of surface temperature in urban area and the application possibility in local climate study are proposed by verifying the correlation with A WS data. Also, IKONOS image was used to figure out the artificial development area in visual.

  • PDF

A High-Resolution Agro-Climatic Dataset for Assessment of Climate Change over South Korea (남한지역 기후변화량 평가를 위한 고해상도 농업기후 자료)

  • Hur, Jina;Park, Joo Hyeon;Shim, Kyo Moon;Kim, Yong Seok;Jo, Sera
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.128-134
    • /
    • 2020
  • The daily gridded meteorological information and climatology with high resolution (30m and 270m) was produced from 94 Automated Surface Observing System (ASOS) of Korea Meteorological Administration (KMA) for the past 50 years (1971-current) by different downscaling methods. In addition, the difference between daily meteorological data and the mean state of past 30 years (1981-2010) was calculated for the analysis of climate change. These datasets with GeoTiff format are available from the web interface (https://agecoclim. agmet.kr). The performance of the data is evaluated using 172 Automatic Weather S tation (AWS ) of Rural Development of Administration (RDA). The data have biases lower than 2.0, and root mean square errors (RMSE) lower than 3.8. This data may help to better understand the regional climatic change and its impact on agroecosystem in S outh Korea.

The Vulnerability of the Reclaimed Seashore Land Attendant Upon Storm Surge/Coastal Inundation (해일/범람에 따른 해안 매립지의 취약성)

  • Kang, Tae-Soon;Moon, Seung-Rok;Nam, Soo-Yong;Shim, Jae-Seol
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.68-75
    • /
    • 2010
  • Recently, the intensity and frequency of typhoons have been on the increase due to unusual weather phenomena and climate change. In particular, on September 13, 2003, typhoon MAEMI (0314) caused heavy damage in the provinces of Busan and Gyongnam, but also provided an opportunity to perform a variety of studies on storm surge. According to investigation reports on the damage resulting from typhoon MAEMI, the areas where coastal inundation occurred were located in reclaimed land under coastal development. In this study, through an image data analysis of historic and present day typhoons affecting Masan, we found that the inundation damage areas corresponded to reclaimed lands. Therefore, using the area around Busan, including the southeastern coast of Korea where typhoons lead to an increased storm surge risk, we performed a storm surge/inundation simulation, and examined the inundation effect on reclaimed land due to the intensified typhoons predicted for the future by climate change scenarios.

The Impact Assessment of Urbanization on the Atmospheric Environment (도시화가 대기환경에 미치는 영향평가)

  • Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.73-86
    • /
    • 1995
  • This paper demonstrates Environmental Impact Assessment (EIA) has to be applied for development projects with regard to the ecological, economical and social aspects before any decisions made in the project. Korea has confronted various environmental problems during the last fifteen years, even though EIA has been enacted since 1981. The role of impact assessment in planning and policy processes should be emphasized to investigate the magnitude and intensity of the adverse influences of economic development. In the Seoul Metropolitan Region, it is necessary to apply EIA all urban projects to reduce the adverse effects of urbanization. Special attention should be given to the climatological effects throughout the urbanization process in Korea to keep the urban area energy-efficient. This study intends not only to establish basic data for national-and regional-based land-use policy in the environmental aspects, but also to provide the basic data for the possible climate model (scenarios) that may provide spatial and temporal variability by analyzing the actual climatic record. There is a noticeable impact of urbanization on the atmospheric environment in the Seoul Metropolitan Region. In this sense, the climatic aspect must be taken into consideration in the process of EIA to mitigate the well-known climatic alterations of urbanization. Moreover, the techniques of assessment should be improved by developing geo-reference data sets to build models of the global climate in response to the man-made environmental change.

  • PDF

A Comparison of Recognition between Expert Group and General People Group about Geo-technologies in the Future (미래 지질자원기술에 대한 전문가와 일반인 인식 비교)

  • Kim, Chan-Souk
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.455-461
    • /
    • 2018
  • The purpose of this study is to compare the expert group's recognition with general people's recognition about the image of the future on geo-technoloies. The survey targeting to 215 experts and to 598 people had been completed from July to August, 2017 by a research firm. The research result showed that energy was selected as the first priority by expert group and climate environment, geologic environment, mineral resources and material, living place, space-earth research, and the fourth industrial revolution were sequence ranked by experts. Also, it was analyzed that climate environment was recognized as the first priority and geologic environment, energy, mineral resources and material, living place, space-earth research, the fourth industrial revolution were ranked in sequence by general people group.

Temporal and Spatial Variations of Sinking-particle Fluxes in the Northwestern Subtropical Pacific (북서태평양 아열대 해역에서 침강입자 플럭스의 시·공간 변동)

  • Kim, Hyung-Jeek;Hyeong, Ki-Seong;Yoo, Chan-Min;Jeon, Dong-Chull;Jeong, Jin-Hyun;Khim, Boo-Keun;Kim, Dong-Seon
    • Ocean and Polar Research
    • /
    • v.33 no.spc3
    • /
    • pp.385-395
    • /
    • 2011
  • Time-series sediment traps were deployed at 1,000 m water depth of the northwestern subtropical Pacific from July 2009 to June 2010, with the aim of understanding temporal and spatial variations of sinking-particle fluxes. The opening and closing of the traps was synchronized at 18-day periods for 20 events. Total mass fluxes showed distinct seasonal variations with high values for the summer-fall seasons and relatively low values for winter-spring. This seasonal variation at two stations was characterized by a distinct difference in $CaCO_3$ fluxes between the two seasons. The enhanced $CaCO_3$ flux in the summer - fall seasons might be attributed to an increased planktonic foraminiferal flux. Total mass flux at FM10 station was nearly 50% higher than that at FM1 station. The difference in $CaCO_3$ fluxes between two stations contributed nearly 70% of the difference of total mass fluxes. The $CaCO_3$ flux was a major component controlling temporal and spatial variation of sinking - particle fluxes in the western subtropical Pacific Ocean.

Prediction of Changes in Potential Distribution of Warm-Temperate and Subtropical Trees, Myrica rubra and Syzygium buxifolium in South Korea (남한에서 기후변화에 따른 난아열대 목본식물, Myrica rubra와 Syzygium buxifolium의 잠재분포 변화 예측)

  • Eun-Young, Yim;Hyun-kyu, Won;Jong-Seo, Won;Dana, Kim;Hyungjin, Cho
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.282-289
    • /
    • 2022
  • Analyzing the impact of climate change on the Korean Peninsula on the forest ecosystem is important for the management of subtropical forest bioresources. In this study, we collected location data and bioclimatic variables of the warm-temperate woody plant species, Myrica rubra and Cyzygium buxifolium, and applied the MaxEnt model based on the collected data to estimate the potential distribution area. Precipitation and temperature seasonality in the warmest quarter were the main environmental factors that determined the distribution of M. rubra, and the main environmental factors for S. buxifolium were precipitation in the warmest quarter and precipitation in the wettest quarter. The results of the MaxEnt model by administrative district, the M. rubra showed an area increase rate of 4.6 - 17.7% in the SSP2-4.5 climate change scenario and 13.8 - 30.5% in the SSP5-8.5 climate change scenario. S. buxifolium showed area increase rates of 4.8 - 32.2% in the SSP2-4.5 climate change scenario and 12.9 - 48.6% in the SSP5-8.5 climate change scenario. This study is meaningful in establishing a database and identifying future potential distribution areas of warm and subtropical plants by applying climate change scenarios.

Biological indicators to monitor responses against climate change in Korea

  • Lee, Byoung-Yoon;Nam, Gi-Heum;Yun, Jong-Hak;Cho, Ga Youn;Lee, Jin Sung;Kim, Jin-Han;Park, Tae Seo;Kim, Kigyoung;Oh, Kyounghee
    • Korean Journal of Plant Taxonomy
    • /
    • v.40 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • The most useful criteria and selection procedures of biological indicators have been developed in Korea because they have taken into account local and national concerns on biological responses against climate change. On the basis of these criteria and selection procedures, 100 climate-sensitive biological indicator species were selected to predict biodiversity distribution shift by climate change and manage biological resources integratedly at the national level. It is expected that selection and monitoring of biological indicators by climate change will provide significant information to prepare protective strategies of vulnerable species against climate change and adaptive policies under the changing environment in Korea. In this paper, we have reviewed what kinds of criteria were considered in selecting bioindicators to assess responses of biological organisms against climate change. Definition and selection steps of bioindicators were proposed, and the 100 species of climate- sensitive biological indicators were selected out of 33,253 taxa reported in Korea.

Modeling the Effect of a Climate Extreme on Maize Production in the USA and Its Related Effects on Food Security in the Developing World (미국 Corn Belt 폭염이 개발도상국의 식량안보에 미치는 영향 평가)

  • Chung, Uran
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2014.10a
    • /
    • pp.1-24
    • /
    • 2014
  • This study uses geo-spatial crop modeling to quantify the biophysical impact of weather extremes. More specifically, the study analyzes the weather extreme which affected maize production in the USA in 2012; it also estimates the effect of a similar weather extreme in 2050, using future climate scenarios. The secondary impact of the weather extreme on food security in the developing world is also assessed using trend analysis. Many studies have reported on the significant reduction in maize production in the USA due to the extreme weather event (combined heat wave and drought) that occurred in 2012. However, most of these studies focused on yield and did not assess the potential effect of weather extremes on food prices and security. The overall goal of this study was to use geo-spatial crop modeling and trend analysis to quantify the impact of weather extremes on both yield and, followed food security in the developing world. We used historical weather data for severe extreme events that have occurred in the USA. The data were obtained from the National Climatic Data Center (NCDC) of the National Oceanic and Atmospheric Administration (NOAA). In addition we used five climate scenarios: the baseline climate which is typical of the late 20th century (2000s) and four future climate scenarios which involve a combination of two emission scenarios (A1B and B1) and two global circulation models (CSIRO-Mk3.0 and MIROC 3.2). DSSAT 4.5 was combined with GRASS GIS for geo-spatial crop modeling. Simulated maize grain yield across all affected regions in the USA indicates that average grain yield across the USA Corn Belt would decrease by 29% when the weather extremes occur using the baseline climate. If the weather extreme were to occur under the A1B emission scenario in the 2050s, average grain yields would decrease by 38% and 57%, under the CSIRO-Mk3.0 and MIROC 3.2 global climate models, respectively. The weather extremes that occurred in the USA in 2012 resulted in a sharp increase in the world maize price. In addition, it likely played a role in the reduction in world maize consumption and trade in 2012/13, compared to 2011/12. The most vulnerable countries to the weather extremes are poor countries with high maize import dependency ratios including those countries in the Caribbean, northern Africa and western Asia. Other vulnerable countries include low-income countries with low import dependency ratios but which cannot afford highly-priced maize. The study also highlighted the pathways through which a weather extreme would affect food security, were it to occur in 2050 under climate change. Some of the policies which could help vulnerable countries counter the negative effects of weather extremes consist of social protection and safety net programs. Medium- to long-term adaptation strategies include increasing world food reserves to a level where they can be used to cover the production losses brought by weather extremes.

  • PDF