Browse > Article
http://dx.doi.org/10.17820/eri.2022.9.4.282

Prediction of Changes in Potential Distribution of Warm-Temperate and Subtropical Trees, Myrica rubra and Syzygium buxifolium in South Korea  

Eun-Young, Yim (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science)
Hyun-kyu, Won (Warm Temperate and Subtropical Forest Research Center, National Institute of Forest Science)
Jong-Seo, Won (Corp. ECOnGEO)
Dana, Kim (Corp. ECOnGEO)
Hyungjin, Cho (Corp. ECOnGEO)
Publication Information
Ecology and Resilient Infrastructure / v.9, no.4, 2022 , pp. 282-289 More about this Journal
Abstract
Analyzing the impact of climate change on the Korean Peninsula on the forest ecosystem is important for the management of subtropical forest bioresources. In this study, we collected location data and bioclimatic variables of the warm-temperate woody plant species, Myrica rubra and Cyzygium buxifolium, and applied the MaxEnt model based on the collected data to estimate the potential distribution area. Precipitation and temperature seasonality in the warmest quarter were the main environmental factors that determined the distribution of M. rubra, and the main environmental factors for S. buxifolium were precipitation in the warmest quarter and precipitation in the wettest quarter. The results of the MaxEnt model by administrative district, the M. rubra showed an area increase rate of 4.6 - 17.7% in the SSP2-4.5 climate change scenario and 13.8 - 30.5% in the SSP5-8.5 climate change scenario. S. buxifolium showed area increase rates of 4.8 - 32.2% in the SSP2-4.5 climate change scenario and 12.9 - 48.6% in the SSP5-8.5 climate change scenario. This study is meaningful in establishing a database and identifying future potential distribution areas of warm and subtropical plants by applying climate change scenarios.
Keywords
MaxEnt; SSPs; MaxTSS; Forest bioresource;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Santos, R.R., Hernandez, M.J.P., Baez, W.L., Ramos, J.H., Flores, H.J. M., Uicab, J.V.C., and Santos, M.D.R. 2018. The ecological niche as a tool for predicting potential areas of two pine species. Mexican Journal of Forest Sciences, 9: 47-68.
2 Schmidt, H., Radinger, J., Teschlade, D., and Stoll, S. 2020. The role of spatial units in modelling freshwater fish distributions: Comparing a subcatchment and river network approach using MaxEnt. Ecological Modelling 418: 108937.
3 Valavi, R., Shafizadeh-Moghadam, H., Matkan, A., Shakiba, A., Mirbagheri, B., and Kia, S.H. 2019. Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology 137: 1015-1025.   DOI
4 Warren, D.L., Glor, R.E., and Turelli, M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607-611.   DOI
5 Worldclim. 2022. Global climate and weather data. http://www.worldclim.org. Assessed 06 July 2022.
6 AMNH 2022. American Musem of Natural History. https://biodiversityinformatics.amnh.org/open_source/maxent. Assessed 01 April 2022.
7 Bae, E.H. and Jung, J.H. 2015. Prediction of shift in fish distributions in the Geum River Watershed under climate change. Ecology and Resilient Infrastructure 2: 198-205. (in Korean)   DOI
8 Cho, K.H. and Lee, S.H. 2015. Prediction of changes in the potential distribution of a waterfront alien plant, Paspalum distichum var. indutum, under climate change in the Korean Peninsula. Ecology and Resilient Infrastructure 2: 206-215. (in Korean)   DOI
9 Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., and Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17: 43-57.   DOI
10 GBIF. 2022. Global Biodiversity Information Facility. http://data.gbif.org/species. Assessed 06 July 2022.
11 Go, S.-J., Kang H., Chim S.-H., and Chang, J.I. 1997. Native habitat survey of wax myrtle in Cheju Province and its propagation by seed and cutting. Journal of Biological Production Facilities & Environmental Control 6: 225-234. (in Korean)
12 Kim, C.H., Moon, M.O., An, J.G., Hwang, I.C., Lee, S.H., Choi, S.S., Lee, J.H., Beom, H.M., Kim, C.G., and Cha, J.Y. 2018. Floristic target species in Korea. National Institute of Ecology, Seocheon, South Korea. (in Korean)
13 Kim, W.-M., Kim, C.Y., Cho, J.P., Hur, J.N., and Song, W.K. 2022. Prediction of Acer pictum subsp. mono distribution using bioclimatic predictor based on SSP scenario detailed data. Ecology and Resilient Infrastructure 9: 163-173. (in Korean)   DOI
14 KMA. 2020. Korean climate change assessment report 2020. Korea Meteorological Administration, Seoul, South Korea. (in Korean)
15 Lopez-Martinez, V., Sanchez-Martinez, G., Jimenez-Garcia, D., Perez-De la O, N.B., and Coleman, T.W. 2016. Environmental suitability for Agrilus auroguttatus (Coleoptera: Buprestidae) in Mexico using MaxEnt and database records of four Quercus (Fagaceae) species. Agricultural and Forest Entomology 18: 409-418.   DOI
16 NBC. 2022. CBD-CHM KOREA. National Biodiversity Center. https://www.kbr.go.kr. Assessed 06 July 2022.
17 Negrini, M., Fidelis, E.G., Picanco, M.C., and Ramos, R.S. 2020. Mapping of the Steneotarsonemus spinki invasion risk in suitable areas for rice (Oryza sativa) cultivation using MaxEnt. Experimental and Applied Acarology 80: 445-461.
18 O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M. 2016. The Scenario model intercomparison project (ScenarioMIP) for CMIP6, Geoscientific Model Development, 9: 3461-3482.   DOI
19 NIFS. 2021. Analysis of potential distribution area of subtropical forest life resources in response to climate change. National Institute of Forest Science, Seoul, South Korea. (in Korean)
20 Oh, Y.-J., Kim, M.-H., Choi, S.-K., Kim, M.-K., Eo, J., Yeob, S.-J., Bang, J. H., and Lee, Y. H. 2021. Prediction of the spatial distribution of suitable habitats for Geranium carolinianum under SSP scenarios. Ecology and Resilient Infrastructure, 8: 154-163. (in Korean)
21 Padalia, H., Srivastava, V., and Kushwaha, S.P.S. 2014. Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological Informatics 22: 36-43.   DOI
22 Palkar, R.S., Janarthanam, M.K., and Sellappan, K. 2020. Prediction of potential distribution and climatic factors influencing Garcinia indica in the Western Ghats of India using ecological niche modeling. National Academy Science Letters 7: 1-7.
23 Phillips, S.J., Anderson, R.P., and Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259.   DOI
24 Phillips, S.J., Anderson, R.P., Dudik, M., Schapire, R.E., and Blair, M.E. 2017. Opening the black box: An open-source release of Maxent. Ecography 40: 887-893.   DOI
25 QGIS Development Team. 2022. QGIS Geographic Information System. Open Source Geospatial Foundation. http://qgis.org. Assessed 06 April 2022.