• 제목/요약/키워드: genus Bacillus

검색결과 194건 처리시간 1.497초

A report of 35 unrecorded bacterial species isolated from sediment in Korea

  • Han, Ji-Hye;Baek, Kiwoon;Hwang, Seoni;Nam, Yoon Jong;Lee, Mi-Hwa
    • Journal of Species Research
    • /
    • 제9권4호
    • /
    • pp.362-374
    • /
    • 2020
  • A total of 35 bacterial strains were isolated from various sediment samples. From 16S rRNA gene sequence similarities higher than 98.7% and the formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to independent and predefined bacterial species. No previous official reports have described these 35 species in Korea. The unrecorded species were assigned to 6 phyla, 10 classes, 18 orders, 23 families, and 31 genera. At the genus level, the unrecorded species were affiliated with Terriglobus of the phylum Acidobacteria, as well as with Mycobacterium, Rhodococcus, Kineococcus, Phycicoccus, Agromyces, Cryobacterium, Microbacterium, and Arthrobacter; Catellatospora of the class Actinomycetia; Lacibacter of the class Chitinophagia; Algoriphagus and Flectobacillus of the class Cytophagia; Flavobacterium and Maribacter of the class Flavobacteriia; Bacillus, Cohnella, Fontibacillus, Paenibacillus, Lysynibacillus, and Paenisporosarcina of the class Bacilli; Bradyrhizobium, Gemmobacter, Loktanella, and Altererythrobacter of the class Alphaproteobacteria; Acidovorax of the class Betaproteobacteria; Aliiglaciecola, Cellvibrio, Arenimonas, and Lysobacter of class Gammaproteobacteria; and Roseimicrobium of the class Verrucomicrobia. The selected strains were subjected to further taxonomic characterization, including Gram reaction, cellular and colonial morphology, and biochemical properties. This paper provides detailed descriptions of the 35 previously unrecorded bacterial species.

Plant growth promoting rhizobacteria influence potato tuberization through enhancing lipoxygenase activity

  • Akula, Nookaraju;Upadhyaya, Chandrama P.;Kim, Doo-Hwan;Chun, Se-Chul;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.18-18
    • /
    • 2010
  • Molecular insights on the role of plant growth promoting rhizobacteria (PGPR) in potato tuberization are reported in the present study. The PGPRwere isolated from the soil collected from potato fields of Highland Agricultural Research Centre, Pyeongchang, Korea and they were identified to the genus level based on the 16S rRNA sequence analysis. These PGPR were heat-killed, filtered and the filtrates were addedindividually at a concentration of $10^7\;cfu\;mL^{-1}$ in MS (Murashige and Skoog's) medium supplemented with 7% (w/v) sucrose to study their influence on in vitro potato tuberization. Tuber initiation occurred early in untreated control, while tuber growth was pronounced in case of PGPR treatments. The control explants showed tuber formation as a result of sub-apical swelling of stolons while several sessile tubers formed directly in the axils of nodal cuttings in case of PGPR treatments, which is an indication of strong induction for tuberization. Theexplants cultured on MS medium supplemented with bacterial isolate 6 (Bacillus firmus strain 40) showed highest average tuber yield (Ca. 12.56 g per treatment) after 30 days of culture, which was 3 folds increase over the untreated control. A significant increase in lipoxygenase (LOX1) mRNA expression and activity of LOX enzyme were also detected in the tubers induced on PGPR treatments as compared to untreated control. This LOX expression level correlated with increased tuber growth and tuber yield. Further studies focused on the role of bacteria cell wall components, growth regulators and signal molecules released by PGPR are under investigation to elicit clues for PGPR-mediated signal pathway controlling potato tuberization.

  • PDF

Analysis on Applicability of Refined Sap of Acer spp. (고로쇠나무류 정제수액의 활용 가능성에 관한 연구)

  • Kwon, Su-Deok;Goo, So-Young;Kim, Jung-Wun;Kim, Chang-Hwan;Kim, Jong-Kab;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • 제43권5호
    • /
    • pp.57-62
    • /
    • 2009
  • This study was conducted to analyze to the applicability of refined saps of Acer mono, A. mono for. rubripes, A. okamotoanum through sap refining system. 1 species of Bacillus genus, 3-4 species of yeast and 2 species of fungi were detected in the origin sap of three Acer spp. The pH in the origin sap were 6.5, and decreased in refining sap as 6.3-6.4. Sucrose in sugar components was detected in the origin and refining sap of Acer spp., but glucose and fructose were not detected. Compared the origin and refining sap, mineral components decreased slightly in refining sap. These results indicate that refining sap of Acer spp. are drinkable with long-term storage.

Microbial Community Changes in the Soil of Plastic Film House as Affected by Anaerobic Fermentation of Rice Bran or Wheat Bran (쌀겨와 밀기울의 토양 혐기발효 처리가 시설 재배지 토양의 미생물상에 미치는 영향)

  • Kim, Hong-Lim;Weon, Hang-Yeon;Sohn, Bo-Kyun;Choi, Young-Hah;Kwack, Young-Bum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제42권5호
    • /
    • pp.341-347
    • /
    • 2009
  • Soil microbial community has been changed after the treatment of anaerobic fermentation using wheat bran or rice bran was applied to the soil. In the dilution plate technique, the number of anaerobic bacteria and fungi was higher in rice bran-treated soil than in non and wheat bran-treated soil, but of yeast was higher in wheat bran-treated soil than in non and rice bran-treated soil. Specially, the fungi were not detected in the wheat bran-treated soil. Identified by 16S rDNA sequencing, the number of aerobic bacteria was similar in all treatments, the dominant bacteria was the genus Bacillus. In the phospholipid fatty acid (PLFA) technique, both Gram-positive and Gram-negative bacteria change slightly in all treatments for 20 days of fermentation process but, after 20day, increased rapidly in wheat or rice bran-treated soil. In conclusion, the microbial communities structure was dramatically changed after the treatment of wheat or rice bran to soil.

Inhibitory Effects of Pepper Mild Mottle Virus Infection by Supernatants of Five Bacterial Cultures in Capsicum annuum L.

  • Venkata Subba Reddy, Gangireddygari;In-Sook, Cho;Sena, Choi;Ju-Yeon, Yoon
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.646-655
    • /
    • 2022
  • Pepper mild mottle virus (PMMoV), one of the most prevalent viruses in chili pepper (Capsicum annuum L.) is a non-enveloped, rod-shaped, single-stranded positive-sense RNA virus classified in the genus Tobamovirus. The supernatants of five bacterial cultures (Pseudomonas putida [PP], Bacillus licheniformis [BLI], P. fluorescens [PF], Serratia marcescens [SER], and B. amyloliquifaciens [BA]) were analyzed to find novel antiviral agents to PMMoV in chili pepper. Foliar spraying with supernatants (1:1, v/v) obtained from Luria-Bertani broth cultures of PP, BLI, PF, SER, and BA inhibited PMMoV infection of chili pepper if applied before the PMMoV inoculation. Double-antibody sandwich enzyme-linked immunosorbent assay showed that treatments of five supernatants resulted in 51-66% reductions in PMMoV accumulation in the treated chili pepper. To identify key compounds in supernatants of PP, BLI, PF, SER, and BA, the supernatants were subjected to gas chromatography-mass spectrometry. The 24 different types of compounds were identified from the supernatants of PP, BLI, PF, SER, and BA. The compounds vary from supernatants of one bacterial culture to another which includes simple compounds-alkanes, ketones, alcohols, and an aromatic ring containing compounds. The compounds triggered the inhibitory effect on PMMoV propagation in chili pepper plants. In conclusion, the cultures could be used to further conduct tissue culture and field trial experiments as potential bio-control agents.

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

Characteristics of Enterobacteria from Harmonia axyridis and Effects of Staphylococcus spp. on Development of H. axyridis (무당벌레(Harmonia axyridis ) 장내세균의 특성 및 Staphylococcus spp. 장내세균이 무당벌레의 발육에 미치는 영향)

  • Moon, Chung-Woun;Kim, Ki-Kwang;Whang, Kyung-Sook;Seo, Mi-Ja;Youn, Young-Nam;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • 제50권2호
    • /
    • pp.157-165
    • /
    • 2011
  • Enterobacteria were isolated in the gut of the predacious multicolored Asian ladybird beetle, Harmonia axyridis, and their effects to the development of H. axyridis were examined. Populations of H. axyridis in this experiment were collected from Kimjae at Cheonbuk province (JK population), Geumsan at Chungnam province (CK population) and laboratory population at Laboratory of Insect Physiology in Chungnam National University, Daejeon. Thirty-four enterobacteria isolates were purified and isolated from the digestive tract of H. axyridis, and a total of 4 strains were classified into group by analysis of 16S rRNA gene sequences. About 70% of total isolates were phylogenetic groups of Bacillus genus and Staphylococcus genus, and they were commonly separated from the digestive tract of H. axyridis. After investigating their susceptibility against antibiotics with 18 representative enterobacteria isolates, ofloxacin and penicillin were selected for examination in this study of their ability to inhibit the growth of all of isolates. In order to remove the enterobacteria from the aphids, ofloxacin and penicillin were given to the green peach aphid, Myzus persicae, and the turnip aphid, Lipaphis erysimi. These aphids were provided to H. axyridis as prey. The weight of pupa, developmental periods of each larval instar, the number of eggs and their hatching ratio of H. axyridis with treatment aphids were lower compared with non-treatment aphids. Staphylococcus saprophyticus is a representative enterobacteria and commonly isolated from the digestive tract of H. axyridis. In the absence of S. saprophyticus, the developmental periods of each larval instar increased; however, the weights of pupa, the number of eggs, and their hatching ratio decreased.

An Evaluation of Vitek MS System for Rapid Identification of Bacterial Species in Positive Blood Culture (혈액배양 양성검체에서 패혈증 원인균 신속동정을 위한 Vitek MS 시스템의 유용성 평가)

  • Park, Kang-Gyun;Kim, Sang-Ha;Choi, Jong-Tae;Kim, Sunghyun;Kim, Young-Kwon;Yu, Young-Bin
    • Korean Journal of Clinical Laboratory Science
    • /
    • 제49권4호
    • /
    • pp.407-412
    • /
    • 2017
  • The aim of this study was to shorten the time required for subculture and bacterial identification and obtain a simple and rapid identification method for new test methods for bloodstream infections. The following results were obtained using a mass spectrometer. In Vitek 2, 208 (81.8%) cases were well-identified and 45 isolates were not identified in blood cultures. Among 208 cases, 146 (57.5%) were Gram positive bacteria and 108 (42.5%) were Gram negative bacteria. In total, 233 were identified to the species level and 21 were identified to the genus level. The identification error was found to be Propionibacterium acnes as Clostridium bifermentans. The accuracy of Enterobacteriaceae, glucose non-fermentative bacilli (GNFB), and staphylococci were 81/83 (97.6%), 12/15 (80.0%), and 72/85 (84.7%), respectively. The concordance rate of Vitek 2 and Vitek MS by the direct method was 81.8% and 45 isolates were not identified. Most of the unidentified bacteria were Gram positive bacteria (N=37). The Gram positive bacteria were streptococci (14), coagulase-negative staphylococci (CNS) (11), enterococci (3), Staphylococcus aureus (2), Micrococcus spp. (2), Bacillus spp. (2) and Actinomyces odontolyticus, Finegoldia magna, and Peptostreptococcus spp. The results reporting time was reduced to 24~72 hours compared to the conventional method. The rate of identification of the aerobic and anaerobic cultures was similar, but the use of an anaerobic culture did not require a dissolution process, which could shorten the sample preparation time. These results suggest that the method of direct identification in blood cultures is very useful for the treatment of patients. In further studies, it might be necessary to further improve the method for identifying streptococci and CNS, which were lacking in accuracy in this study.

Molecular Genetic Identification of Yeast Strains Isolated from Egyptian Soils for Solubilization of Inorganic Phosphates and Growth Promotion of Corn Plants

  • Hesham, Abd El-Latif;Mohamed, Hashem M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.55-61
    • /
    • 2011
  • Forty yeast strains isolated from soils taken from different locations in Egypt were tested for their P-solubilizing activities on the basis of analyzing the clear zone around colonies growing on a tricalcium phosphate medium after incubation for 5 days at $25^{\circ}C$, denoted as the solubilization index (SI). Nine isolates that exhibited P-solubilization potential with an SI ranging from 1.19 to 2.76 were genetically characterized as five yeasts belonging to the genus Saccharomyces cerevisiae and four non-Saccharomyces, based on a PCR analysis of the ITS1-26S region amplied by SC1/SC2 species-specific primers. The highest P-solubilization efficiency was demonstrated by isolate PSY- 4, which was identified as Saccharomyces cerevisiae by a sequence analysis of the variable D1/D2 domain of the 26S rDNA. The effects of single and mixed inoculations with yeast PSY-4 and Bacillus polymyxa on the P-uptake and growth of corn were tested in a greenhouse experiment using different levels of a phosphorus chemical fertilizer (50, 100, and 200 kg/ha super phosphate 15.5% $P_2O_5$). The results showed that inoculating the corn with yeast PSY-4 or B. polymyxa caused significant increases in the shoot and root dry weights and P-uptake in the shoots and roots. The P-fertilization level also had a significant influence on the shoot and root dry weights and P-uptake in the shoots and roots when increasing the P-level from 50 up to 200 kg/ha. Dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 200 kg/ha gave higher values for the shoot and root dry weights and P-uptake in the shoots and roots, yet these increases were nonsignificant when compared with dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha. The best increases were obtained from dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha, which induced the following percentage increases in the shoot and root dry weights, and P-uptake in the shoots and roots; 16.22%, 46.92%, 10.09%, and 31.07%, respectively, when compared with the uninoculated control (fertilized with 100 kg/ha).

Phylogenetic Characteristics of Bacterial Populations Found in Serpentinite Soil (초염기성 사문암 토양 중 세균군집의 계통학적 특성)

  • ;Tomoyoshi Hashimoto
    • Korean Journal of Microbiology
    • /
    • 제39권1호
    • /
    • pp.16-20
    • /
    • 2003
  • A phylogenetic analysis of bacterial populations inhabiting soil derived from serpentine was conducted. The samples were collected from adjacent metamorphic rocks and serpentinite soil at Kwangcheon. The pH of the serpentine areas ranged from 8.5 to 9.2. The number of bacteria on the DAL medium which was diluted with $10^{-2}$ of AL medium was 10~100 fold higher than that from the full strength of AL medium, and which indicates that oligotrophs are distributed in the serpentinite soil. Of a total of 76 isolates, 42 isolates were oligotrophic bacteria, which grew only on the DAL medium. Based on a phylogenetic analysis using 16S rDNA sequences, these isolates are found to fall within five major phylogenetic groups: proteobacteria $\alpha$-subdivision (3 strains), $\alpha$-subdivision (7 strains), $\gamma$-subdivision (2 trains); high G+C gram-positive bacteria (19 strains); low G+C grampositive bacteria (14 strains). Bacteria of the genus Streptomyces (high G+C division) and Bacillus (low G+C division) have been considered to form a numerically important fraction of serpentinite soil. Oligotrophic strains categorized as Afipia ($\alpha$-subdivision), Ralstonia, Variovorax ($\beta$-subdivision), Pseudomonas ($\gamma$ -subdivision), Arthrobacter (high G+C division), and Streptomyces (low G+C division).