• 제목/요약/키워드: genotyping

검색결과 723건 처리시간 0.036초

Development of an efficient genotyping-by-sequencing (GBS) library construction method for genomic analysis of grapevine

  • Jang, Hyun A;Oh, Sang-Keun
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.495-503
    • /
    • 2017
  • Genotyping-by-sequencing (GBS) is an outstanding technology for genotyping and single nucleotide polymorphism (SNP) discovery compared to next generation sequencing (NGS) because it can save time when analyzing large-scale samples and carries a low cost per sample. Recently, studies using GBS have been conducted on major crops and, to a greater extent, on fruit crops. However, many researchers have some problems due to low GBS efficiency resulting from low quality GBS libraries. To overcome this limitation, we developed an efficient GBS library construction method that regulates important conditions such as restriction enzymes (RE) digestion and a PCR procedure for grapevine. For RE digestion, DNA samples are digested with ApeKI (3.6U) at $75^{\circ}C$ for 5 hours and adapters are ligated to the ends of gDNA products. To produce suitable PCR fragments for sequencing, we modified the PCR amplification conditions; temperature cycling consisted of $72^{\circ}C$ (5 min), $98^{\circ}C$ (30 s), followed by 16 cycles of $98^{\circ}C$ (30 s), $65^{\circ}C$ (30 s), $72^{\circ}C$ (20 s) with a final extension step. As a result, we had obtained optimal library construct sizes (200 to 400 bp) for GBS analysis. Furthermore, it not only increased the mapping efficiency by approximately 10.17% compared to the previous method, but also produced mapped reads which were distributed equally on the19 chromosomes in the grape genome. Therefore, we suggest that this system can be used for various fruit crops and is expected to increase the efficiency of various genomic analysis performed.

High-throughput SNP Genotyping by Melting Curve Analysis for Resistance to Southern Root-knot Nematode and Frogeye Leaf Spot in Soybean

  • Ha, Bo-Keun;Boerma, H. Roger
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권2호
    • /
    • pp.91-100
    • /
    • 2008
  • Melting curve analysis of fluorescently labeled DNA fragments is used extensively for genotyping single nucleotide polymorphism(SNP). Here, we evaluated a SNP genotyping method by melting curve analysis with the two probe chemistries in a 384-well plate format on a Roche LightCycler 480. The HybProbe chemistry is based on the fluorescence resonance energy transfer(FRET) and the SimpleProbe chemistry uses a terminal self-quenching fluorophore. We evaluated FRET HybProbes and SimpleProbes for two SNP sites closely linked to two quantitative trait loci(QTL) for southern root-knot nematode resistance. These probes were used to genotype the two parents and 94 $F_2$ plants from the cross of PI 96354$\times$Bossier. The SNP genotypes of all samples determined by the LightCycler software agreed with previously determined SSR genotypes and the SNP genotypes determined on a Luminex 100 flow cytometry instrument. Multiplexed HybProbes for the two SNPs showed a 98.4% success rate and 100% concordance between repeats two of the same 96 DNA samples. Also, we developed a HybProbe assay for the Rcs3 gene conditioning broad resistance to the frogeye leaf spot(FLS) disease. The LightCycler 480 provides rapid PCR on 384-well plate and allows simultaneous amplification and analysis in approximately 2 hours without any additional steps after amplification. This allowed for a reduction of the potential contamination of PCR products, simplicity, and enablement of a streamlined workflow. The melting curve analysis on the LightCycler 480 provided high-throughput and rapid SNP genotyping and appears highly effective for marker-assisted selection in soybean.

  • PDF

Noninvasive fetal RHD genotyping using cell-free fetal DNA incorporating fetal RASSF1A marker in RhD-negative pregnant women in Korea

  • Han, Sung-Hee;Yang, Young-Ho;Ryu, Jae-Song;Kim, Young-Jin;Lee, Kyoung-Ryul
    • Journal of Genetic Medicine
    • /
    • 제12권2호
    • /
    • pp.100-108
    • /
    • 2015
  • Purpose: Conventional methods for the prenatal detection of fetal RhD status involve invasive procedures such as fetal blood sampling and amniocentesis. The identification of cell-free fetal DNA (cffDNA) in maternal plasma creates the possibility of determining fetal RhD status by analyzing maternal plasma DNA. However, some technical problems still exist, especially the lack of a positive control marker for the presence of fetal DNA. Therefore, we assessed the feasibility and accuracy of fetal RHD genotyping incorporating the RASSF1A epigenetic fetal DNA marker from cffDNA in the maternal plasma of RhD-negative pregnant women in Korea. Materials and Methods: We analyzed maternal plasma from 41 pregnant women identified as RhD-negative by serological testing. Multiplex real-time PCR was performed by amplifying RHD exons 5 and 7 and the SRY gene, with RASSF1A being used as a gender-independent fetal epigenetic marker. The results were compared with those obtained by postnatal serological analysis of cord blood and gender identification. Results: Among the 41 fetuses, 37 were RhD-positive and 4 were RhD-negative according to the serological analysis of cord blood. There was 100% concordance between fetal RHD genotyping and serological cord blood results. Detection of the RASSF1A gene verified the presence of cffDNA, and the fetal SRY status was correctly detected in all 41 cases. Conclusion: Noninvasive fetal RHD genotyping with cffDNA incorporating RASSF1A is a feasible, reliable, and accurate method of determining fetal RhD status. It is an alternative to amniocentesis for the management of RhD-negative women and reduces the need for unnecessary RhIG prophylaxis.

Rapid Identification of Ginseng Cultivars (Panax ginseng Meyer) Using Novel SNP-Based Probes

  • Jo, Ick-Hyun;Bang, Kyong-Hwan;Kim, Young-Chang;Lee, Jei-Wan;Seo, A-Yeon;Seong, Bong-Jae;Kim, Hyun-Ho;Kim, Dong-Hwi;Cha, Seon-Woo;Cho, Yong-Gu;Kim, Hong-Sig
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.504-513
    • /
    • 2011
  • In order to develop a novel system for the discrimination of five ginseng cultivars (Panax ginseng Meyer), single nucleotide polymorphism (SNP) genotyping assays with real-time polymerase chain reaction were conducted. Nucleotide substitution in gDNA library clones of P. ginseng cv. Yunpoong was targeted for the SNP genotyping assay. From these SNP sites, a set of modified SNP specific fluorescence probes (PGP74, PGP110, and PGP130) and novel primer sets have been developed to distinguish among five ginseng cultivars. The combination of the SNP type of the five cultivars, Chungpoong, Yunpoong, Gopoong, Kumpoong, and Sunpoong, was identified as 'ATA', 'GCC', 'GTA', 'GCA', and 'ACC', respectively. This study represents the first report of the identification of ginseng cultivars by fluorescence probes. An SNP genotyping assay using fluorescence probes could prove useful for the identification of ginseng cultivars and ginseng seed management systems and guarantee the purity of ginseng seed.

HPV Genotyping Linear Assay Test Comparison in Cervical Cancer Patients: Implications for HPV Prevalence and Molecular Epidemiology in a Limited-resource Area in Bandung, Indonesia

  • Panigoro, Ramdan;Susanto, Herman;Novel, Sinta Sasika;Hartini, Sri;Sahiratmadja, Edhyana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5843-5847
    • /
    • 2013
  • Background: Persistent infection with high risk human papillomavirus (hrHPV) is strongly associated with cervical cancer. Normal cervical cells may also harbor hrHPV, and detection of early hrHPV infection may minimize risk of cervical cancer development. This study aimed to compare two commercial HPV genotyping assays that may affordable for early screening in a limited-resource setting in Bandung, Indonesia. Materials and Methods: DNA from cervical biopsies with histologically confirmed as squamous cell cervical cacinoma were HPV genotyped by Linear Assay 1 (Roche Diagnostics, Mannheim, Germany) or Linear Assay 2 (Digene HPV Genotyping RH Test, Qiagen Gaithersburg, MD). In a subset of samples of each group, HPV genotype results were then compared. Results: Of 28 samples genotyped by linear assay 1, 22 (78.6%) demonstrated multiple infections with HPV-16 and other hrHPV types 18, 45 and/or 52. In another set of 38 samples genotyped by linear assay 2, 28 (68.4%) were mostly single infections by hrHPV type 16 or 18. Interestingly, 4 samples that had been tested by both kits showed discordant results. Conclusions: In a limited-resource area such as in Indonesia, country with a high prevalence of HPV infection a reliable cervical screening test in general population for early hrHPV detection is needed. Geographical variation in HPV genotyping result might have impacts for HPV prevalence and molecular epidemiology as the distribution in HPV genotypes should give clear information to assess the impact of HPV prophylactic vaccines.

Probe-based qPCR Assay for Rapid Detection of Predominant Candida glabrata Sequence Type in Korea

  • Bae, Jinyoung;Lee, Kyung Eun;Jin, Hyunwoo
    • 대한의생명과학회지
    • /
    • 제25권4호
    • /
    • pp.407-416
    • /
    • 2019
  • Recent years have seen an increase in the incidence of candidiasis caused by non-albicans Candida (NAC) species. In fact, C. glabrata is now second only to C. albicans as the most common cause of invasive candidiasis. Therefore, the rapid genotyping specifically for C. glabrata is required for early diagnosis and treatment of candidiasis. A number of genotyping assays have been developed to differentiate C. glabrata sequence types (STs), but they have several limitations. In the previous study, multi-locus sequence typing (MLST) has performed with a total of 101 C. glabrata clinical isolates to analyze the prevalent C. glabrata STs in Korea. A total of 11 different C. glabrata STs were identified and, among them, ST-138 was the most commonly classified. Thus, a novel probe-based quantitative PCR (qPCR) assay was developed and evaluated for rapid and accurate identification of the predominant C. glabrata ST-138 in Korea. Two primer pairs and hybridization probe sets were designed for the amplification of internal transcribed spacer 1 (ITS1) region and TRP1 gene. Analytical sensitivity of the probe-based qPCR assay was 100 ng to 10 pg and 100 ng to 100 pg (per 1 μL), which target ITS1 region and TRP1 gene, respectively. This assay did not react with any other Candida species and bacteria except C. glabrata. Of the 101 clinical isolates, 99 cases (98%) were concordant with MLST results. This novel probe-based qPCR assay proved to be rapid, sensitive, highly specific, reproducible, and cost-effective than other genotyping assay for C. glabrata ST-138 identification.

Genotyping of avian pathogenic Escherichia coli by DNA fragment analysis for the differences in simple sequence repeats

  • Han, Mi Na;Byeon, Hyeon Seop;Han, Seong Tae;Jang, Rae Hoon;Kim, Chang Seop;Choi, Seok Hwa
    • 한국동물위생학회지
    • /
    • 제41권4호
    • /
    • pp.257-262
    • /
    • 2018
  • Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry farms, due to systemic infections leading to lethal colisepticemia. It causes a variety of diseases from air sac infection to systemic spread leading to septicemia. Secondary infection contains opportunistic infections due to immunosuppression disease. Collibacillosis causes the great problems in the poultry industry in Korea. Thus, it is necessary to identify and classify the characteristics of E. coli isolate of chicken origin to confirm the diversity of symptoms and whether they are transmitted among the farms. Fragment analysis is identify the difference in the number of Variable-Number Tandem-Repeats (VNTRs) for genotyping. VNTRs have repeating structure (Microsatellite, Short tandem repeats; STR, Simple sequence repeats; SSR) in the chromosome. This region can be used as a genetic marker because of its high mutation rate. And various lengths of the amplified DNA fragment cause the difference in the number of repetition of the DNA specific site. The number of repetition sequences indicates the separated size of fragments, so the each fragments can be distinguished by specific samples. The results of the sample show that there is no difference in six microsatellite loci (yjiD, aidB, molR_1, ftsZ, b1668, yibA). There are differences among the farms in relation of the number of repetitions of other six microsatellite loci (ycgW, yaiN, yiaB, mhpR, b0829, caiF). Four (ycgW, yiaB, b0829, caiF) of these six microsatellite loci show statistically significant differences (P<0.05). It means that the analysis using four microsatellite loci including ycgW, yiaB, b0829, and caiF can confirm among the farms. Five E. coli samples in one farm have same SSR repetition at all markers. But, there are significant differences from other farms at Four (ycgW, yiaB, b0829, caiF) microsatellite loci. These results emphasize again that the four microsatellite loci makes a difference in the amplified DNA fragments, enabling it to be used for E. coli genotyping.

2019년 대구에서 확인된 백신 관련 홍역 2례 (Two Cases of Vaccine-Associated Measles in Daegu, South Korea, 2019)

  • 유은주;김원덕;김영진
    • Pediatric Infection and Vaccine
    • /
    • 제27권3호
    • /
    • pp.205-209
    • /
    • 2020
  • 우리나라는 2014년 세계보건기구로부터 홍역퇴치국가로 인증을 받았으나, 일부 해외유입으로 인한 홍역 및 해외유입 관련 사례들이 보고되고 있다. 홍역 예방 접종률이 높은 홍역 퇴치 국가에서 야생형 홍역의 발병률이 감소함에 따라 홍역으로 진단된 사례 중에서 백신 관련 홍역의 비율이 증가되고 있다. 야생형 홍역은 전염력이 높아서 접촉 추적 및 관리가 필요한 반면, 백신 관련 홍역은 전염성이 없어서 후속 개입이 필요하지 않다. 그러므로 홍역 의심 환자 발생시 야생형 홍역과 백신 관련 홍역을 확실하게 구별하기 위해 홍역 유전자형 검사를 시행해야 한다. 대구 파티마병원에서 2명의 백신 관련 홍역 환자를 진단하였다. 이는 유전자형 분석을 통해 확진한 사례로 국내에서는 유전자형 분석을 통해 보고된 백신 관련 홍역 환자가 거의 없는 상태이므로 유전자형 분석의 필요성을 강조하면서 최근의 백신 관련 홍역 사례를 보고하는 바이다.

misMM: An Integrated Pipeline for Misassembly Detection Using Genotyping-by-Sequencing and Its Validation with BAC End Library Sequences and Gene Synteny

  • Ko, Young-Joon;Kim, Jung Sun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.128-135
    • /
    • 2017
  • As next-generation sequencing technologies have advanced, enormous amounts of whole-genome sequence information in various species have been released. However, it is still difficult to assemble the whole genome precisely, due to inherent limitations of short-read sequencing technologies. In particular, the complexities of plants are incomparable to those of microorganisms or animals because of whole-genome duplications, repeat insertions, and Numt insertions, etc. In this study, we describe a new method for detecting misassembly sequence regions of Brassica rapa with genotyping-by-sequencing, followed by MadMapper clustering. The misassembly candidate regions were cross-checked with BAC clone paired-ends library sequences that have been mapped to the reference genome. The results were further verified with gene synteny relations between Brassica rapa and Arabidopsis thaliana. We conclude that this method will help detect misassembly regions and be applicable to incompletely assembled reference genomes from a variety of species.

Construction of genetic linkage maps of Allium cepa using genotyping-by-sequencing

  • Lee, Daewoong;Chung, Yong Suk;Kim, Changsoo;Jun, Tae-Hwan
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.117-117
    • /
    • 2017
  • The onion (Allium cepa L.) is the most widely cultivated species of the genus Allium, especially it has been valued because of the pungent flavor and aroma. Allium species including onion has very large genome sizes ranging from approximately 10 to 20 Gbp, which have complicated genomic studies and precluded genome sequencing until recently. A population of 186 F2 individuals derived from a cross of 'Umjinara' ${\times}$ 'Sinsunhwang' and the two parental lines were used for this study. For the development of framework map, various types of markers including SSRs, RAPD, SNPs, and CAPS makers have been used for polymorphism test. Especially, a lot of SNP and CAPS loci were developed from the onion transcriptome sequence by RNASEQ of two parental lines. The GBS libraries have been constructed based on a modified protocol from Poland Lab using a two-enzyme system. We have been developing markers showing polymorphism between two parental lines, and genotyping for all F2 individuals were finished for a number of polymorphic markers. For the construction of GBS libraries, a set of 192 barcoded adapters were generated from complementary oligonucleotides with XhoI overhang sequence and unique barcodes of length 4-8 bp and they have been tested using two parental linesto determine the optimum conditions for GBS analysis.

  • PDF